K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 12 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)

\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)

- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)

- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)

- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)

Vậy \(P=0\)

2 tháng 8 2017

Từ giả thiết suy ra: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)

\(\Rightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\) (a + b)[c(a + b + c) + ab] = 0

\(\Rightarrow\) (a + b)(ac + ab + bc + c2) = 0

\(\Rightarrow\) (a + b)(b + c)(a + c) = 0

P = (a2004 - b2004)(b2005 + c2005)(c2006 - a2006)

= (a + b)(b + c)(a + c) = 0

20 tháng 10 2016

Bạn tham khảo :

Ta có :

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)

\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)

\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)

\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)

\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)

\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)

\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)

\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)

\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)

TH1 : \(a+c=0\)

\(\Rightarrow a=-c\)

\(\Rightarrow c^{2006}=a^{2006}\)

\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)

\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)

\(=0\)

CMTT đều có \(P=0\)

Vậy ...

20 tháng 10 2016

hay quá cảm ơn nha nhưng có cách nào gọn hơn ko

9 tháng 10 2017

a) vì ab > 0 nên chia cả hai vế Bất đẳng thức cho \(\sqrt{ab}\) ta được

\(\sqrt{\dfrac{c\left(a-c\right)}{ab}}+\sqrt{\dfrac{c\left(b-c\right)}{ab}}\le1\)

Áp dụng Bất đẳng thức Cauchy cho hai số

\(\Rightarrow\sqrt{\dfrac{c}{b}\left(\dfrac{a-c}{a}\right)}+\sqrt{\dfrac{c}{a}\left(\dfrac{b-c}{b}\right)}\le\dfrac{1}{2}\left(\dfrac{c}{b}+\dfrac{a-c}{a}\right)+\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{b-c}{b}\right)=1\)

vậy nên ta có đpcm

10 tháng 10 2017

\(\frac{2005}{\sqrt{2006} }+\frac{2006}{\sqrt{2005} }>\sqrt{2005}+\sqrt{2006} \)

<=>\(2005\sqrt{2005}+2006\sqrt{2006}>2005\sqrt{2006}+2006\sqrt{2005} \)

<=>\(\sqrt{2006}<\sqrt{2005} \)

14 tháng 12 2018

Từ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+bc^2+ac^2=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left[a\left(b+c\right)+c\left(b+c\right)\right]\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)

Thay vào từng TH suy ra M=0

17 tháng 10 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\times\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

\(\Rightarrow N=0\)

27 tháng 11 2018

mai lam

16 tháng 12 2018

Áp dụng BĐT AM-GM: \(VT\le\sum\dfrac{1}{\sqrt{a^2+1}.\sqrt{2a}.2\sqrt{bc}}=\sum\dfrac{1}{2\sqrt{2}\sqrt{a^2+1}}\)

Ta đi chứng minh \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

Giả sử c=max{a, b, c}.Suy ra \(c\ge1\) nên \(ab\le1\). Ta có bổ đề:

\(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{1}{\sqrt{b^2+1}}\le\dfrac{2}{\sqrt{1+ab}}\)(*)

#cm: Áp dụng Bunyakovsky: \(VT_{(*)} \)\(\le\sqrt{2\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\right)}\)

Xét \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}-\dfrac{2}{ab+1}=\dfrac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

Nên \(VT_{(*)}\)\(\le\sqrt{2.\dfrac{2}{ab+1}}=\dfrac{2}{\sqrt{ab+1}}\), suy ra đpcm.

Do đó \(VT\le\dfrac{2}{\sqrt{ab+1}}+\dfrac{1}{\sqrt{c^2+1}}=2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\)

# cm: \(2\sqrt{\dfrac{c}{c+1}}+\dfrac{1}{\sqrt{c^2+1}}\le\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{2c\left(c^2+1\right)}+\sqrt{2c+2}\le3\sqrt{\left(c+1\right)\left(c^2+1\right)}\)

\(\Leftrightarrow8c^3+10c+2+8\sqrt{c\left(c+1\right)\left(c^2+1\right)}\le9\left(c^3+c^2+c+1\right)\)

hay \(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le c^3+9c^2-c+7\) ($)

Áp dụng BĐT AM-GM cho VT của ($):

\(8\sqrt{\left(c^2+c\right)\left(c^2+1\right)}\le4\left(2c^2+c+1\right)\) .Ta chứng minh

\(8c^2+4c+4\le c^3+9c^2-c+7\) hay \(\left(c-1\right)^2\left(c+3\right)\ge0\) (đúng)

Vậy ta có đpcm. Dấu = xảy ra khi a=b=c=1

17 tháng 3 2022

a) phương trình \(x^3-3x^2+1\) có 3 nghiệm thực phân biệt là a,b,c(đề bài). Áp dụng Định lí Vi-ét cho đa thức bậc 3 ta có:\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ac=0\\a.b.c=-1\end{matrix}\right.\)

ta có

      a+b+c=3

<=>\(\left(a+b+c\right)^2=9\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ac=9\)

<=>\(a^2+b^2+c^2=9\)

<=>\(\left(a^2+b^2+c^2\right)^2=81\)

<=>\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=81\)(1)

ta có ab+bc+ac=0

   <=>\(\left(ab+bc+ac\right)^2=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2-2.1.3=0\)

   <=>\(a^2b^2+b^2c^2+a^2c^2=6\)(2)

Thay (2) vào (1) ta có \(a^4+b^4+c^4+2.6=81\)

                                <=>\(a^4+b^4+c^4=69\)

17 tháng 3 2022

b) \(\dfrac{a+1}{\left(b+c\right)\left(1-a\right)+1}=\dfrac{a+1}{\left(3-a\right)\left(1-a\right)+1}=\dfrac{a+1}{3+a^2-4a+1}=\dfrac{a+1}{a^2-4a+4}=\dfrac{a+1}{\left(a-2\right)^2}\)

cmtt =>\(B=\dfrac{a+1}{\left(a-2\right)^2}+\dfrac{b+1}{\left(b-2\right)^2}+\dfrac{c+1}{\left(c-2\right)^2}\)=\(\dfrac{1}{a-2}+\dfrac{1}{b-2}+\dfrac{1}{c-2}+3\left[\dfrac{1}{\left(a-2\right)^2}+\dfrac{1}{\left(b-2\right)^2}+\dfrac{1}{\left(c-2\right)^2}\right]\)=\(\dfrac{3\left[\left(a-2\right)\left(b-2\right)\right]^2+3\left[\left(b-2\right)\left(c-a\right)\right]^2+3\left[\left(c-2\right)\left(a-2\right)\right]^2}{\left[\left(a-2\right)\left(b-2\right)\left(c-2\right)\right]^2}\)

đặt t=(a-2)(b-2);u=(b-2)(c-2);v=(c-2)(a-2)     =>t+u+v=0

B thành \(\dfrac{3\left(t^2+u^2+v^2\right)}{t.u.v}\) bạn biến đổi để xuất hiện t+u+v

=>B=\(\dfrac{3\left(t+u+v\right)^2-6\left(t.u+u.v+t.v\right)}{t.u.v}=\dfrac{-6.\left(a-2\right)\left(b-2\right)\left(c-2\right)\left(a-2+b-2+c-2\right)}{t.u.v}=\dfrac{18}{\left(a-2\right)\left(b-2\right)\left(c-2\right)}\)

(a-2)(b-2)(c-2)= abc-2(ab+bc+ac)+4(a+b+c)-8=12-9=3

Vậy B=3

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0