K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

8 tháng 2 2023

Theo đề ra, ta có:

\(a^2+b^2+c^2\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

Theo BĐT Cô-si:

\(\left\{{}\begin{matrix}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Do vậy \(M\ge14\left(a^2+b^2+c^2\right)+\dfrac{3\left(ab+bc+ac\right)}{a^2+b^2+c^2}\)

Ta đặt \(a^2+b^2+c^2=k\)

Luôn có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

Vì thế nên \(k\ge\dfrac{1}{3}\)

Khi đấy:

\(M\ge14k+\dfrac{3\left(1-k\right)}{2k}=\dfrac{k}{2}+\dfrac{27k}{2}+\dfrac{3}{2k}-\dfrac{3}{2}\ge\dfrac{1}{3}.\dfrac{1}{2}+2\sqrt{\dfrac{27k}{2}.\dfrac{3}{2k}}-\dfrac{3}{2}=\dfrac{23}{3}\)

\(\Rightarrow Min_M=\dfrac{23}{3}\Leftrightarrow a=b=c=\dfrac{1}{3}\).

21 tháng 5 2022

https://hoc24.vn/cau-hoi/cho-abc-0-thoa-man-abbcca3-tim-gia-tri-nho-nhat-cua-pdfrac13a1b2dfrac13b1c2dfrac13c1a2.6181078378966

22 tháng 1 2018

Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)

\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\) 

AH
Akai Haruma
Giáo viên
14 tháng 10 2017

Lời giải:

\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)

\(\Leftrightarrow a-c+b-c+2\sqrt{(a-c)(b-c)}=a+b\)

\(\Leftrightarrow c=\sqrt{(a-c)(b-c)}\)

\(\Rightarrow c^2=(a-c)(b-c)=ab-ac-bc+c^2\)

\(\Leftrightarrow ab-ac-bc=0\Leftrightarrow ac+bc-ab=0\)

Ta có: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}-\frac{ab}{c^2}=\frac{(bc)^3+(ac)^3-(ab)^3}{a^2b^2c^2}\) \((1)\)

Ta nhớ đến công thức sau:

\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)

(để cm công thức này rất đơn giản bằng việc sử dụng hằng đẳng thức khai triển)

Khi đó, thay thế: \((x,y,z)=(bc,ac,-ab)\)

\(\Rightarrow (bc)^3+(ac)^3-(ab)^3+3a^2b^2c^2=(bc+ac-ab)(.....)=0\)

\(\Rightarrow (bc)^3+(ac)^3-(ab)^3=-3a^2b^2c^2\) (2)

Từ \((1),(2)\Rightarrow P=\frac{-3a^2b^2c^2}{a^2b^2c^2}=-3\)

25 tháng 7 2017

vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)

\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)

\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v

25 tháng 7 2017

bài này 
áp dụng cô si ta có 
a³/b + ab ≥ 2a² 
b³/c + bc ≥ 2b² 
c³/a + ac ≥ 2c² 
+ + + 3 cái lại 
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc 
mặt khác ta có 
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé) 
thay vào 
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1 
=>minP = 1 
dấu bằng xảy ra <=. a = b = c = 1/√3 
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)

k và kết bạn cho mình nha !!!

28 tháng 1 2018

\(\left(a+b+c\right)=\dfrac{1}{2}\Leftrightarrow\left(a+b+c\right)^2=\dfrac{1}{4}\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=\dfrac{1}{4}\)

Ta có: \(ab+bc+ac=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)-\left(a^2+b^2+c^2+ab+bc+ac\right)=\dfrac{1}{4}-\dfrac{1}{6}=\dfrac{1}{12}\)

\(a^2+b^2+c^2=\dfrac{1}{6}-\left(ab+bc+ac\right)=\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\)

Suy ra: \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)

\(P=\dfrac{3}{2}\)

p/s làm lih tih k chắc đâu:v