K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\)

áp dụng Cô si cho 2 số dương \(\frac{ab}{c}\)và \(\frac{bc}{a}\)ta được: \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)(1)

cho 2 số dương \(\frac{ab}{c}\)và \(\frac{ca}{b}\)ta được: \(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)(2)

cho 2 số dương \(\frac{bc}{a}\)và \(\frac{ca}{b}\)ta được: \(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)(3)

(1) + (2) + (3) vế theo vế ta được: \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

hay \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)(đpcm)

25 tháng 12 2019

gfgfgsdfgfgsdgsfdg

8 tháng 7 2021

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}\)

\(=\frac{a^2+b^2+c^2}{abc}\)

\(\frac{a^2+b^2+c^2}{abc}\ge\frac{2ab+2bc+2ca}{abc}\)(BĐT tương đương)

\(\frac{2abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}{abc}\)

\(=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)< =>ĐPCM\)

3 tháng 2 2017

Ta có: abc > 0 nên xảy ra 2 trường hợp hoặc là a,b,c đều dương (bài toán được chứng minh) hoặc trong 3 số sẽ có 2 số âm 1 số dương.

Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a< 0\\b< 0\\c>0\end{cases}}\)

Ta đặt: \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\) thì theo đề bài ta có

\(\hept{\begin{cases}c-x-y>0\\xy-cx-xy>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}c>x+y\left(1\right)\\xy>cx+cy\left(2\right)\end{cases}}\)

Từ (1) ta có thể suy ra được: \(\hept{\begin{cases}cx>x^2+xy\\cy>y^2+xy\end{cases}}\)

\(\Rightarrow cx+cy>x^2+2xy+y^2\left(3\right)\)

Từ (2) và (3) ta có: \(xy>cx+cy>x^2+2xy+y^2\)

\(\Leftrightarrow0>x^2+xy+y^2\) (sai)

Từ đây ta thấy rằng chỉ có trường hợp \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\) là đúng

3 tháng 2 2017

Rõ rảng abc > 0 nên a,b,c phải khác 0 
+ Giả sử trong a,b,c có 1 số bé hơn 0,vì vai trò a,b,c như nhau giả sử là a ta có 
a < 0 ,do abc > 0 => bc < 0 do a(b + c) + bc > 0 => a(b + c) > -bc hay a(b + c) > 0 do a < 0 => b + c < 0 
=> a + b + c < 0 mâu thuẫn với 1 giả thiết a + b + c > 0 
+ Giả sử có 2 số nhỏ hơn không,tương tự giả sử là a và b ta có 
a + b + c > 0 => c > 0 => abc < 0 mâu thuẫn 
+ còn a,b,c đều nhỏ hơn 0 thì hiển nhiên a + b + c < 0 mâu thuẫn với a + b + c > 0 
Vậy bất buộc cả 3 a,b,c đều phải đồng thời lớn hơn 0

11 tháng 5 2018

Ta có : \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-a-b-c\)

\(\frac{ab-ac}{c}+\frac{bc-ab}{a}+\frac{ca-bc}{b}\)

\(\frac{ab\left(ab-ac\right)}{abc}+\frac{\left(bc\left(bc-ab\right)\right)}{abc}+\frac{ca\left(ca-bc\right)}{abc}\)

\(\frac{a^2b\left(b-c\right)+b^2c\left(c-a\right)+c^2a\left(a-b\right)}{abc}\)  \(\ge0\)

Do a,b,c > 0 

11 tháng 5 2018

Cách 2 . Áp dụng bất đẳng thức Cauchy , ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)

Cộng vế theo vế => \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)

Đẳng thức xảy ra <=> a = b = c 

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

NV
25 tháng 3 2019

Biến đổi tương đương:

\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)

b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)

\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 3 2019

Cám ơn