Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
Ta thấy: \(a+b\le1\Leftrightarrow\hept{\begin{cases}a\le1-b\\b\le1-a\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a\le2-b\\1+b\le2-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{1+b}\ge\frac{a}{2-a}\\\frac{b}{1+a}\ge\frac{b}{2-b}\end{cases}}\Rightarrow\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{a}{2-a}+\frac{b}{2-b}\)
\(\Rightarrow S=\frac{a}{1+b}+\frac{b}{1+a}+\frac{1}{a+b}\ge\frac{a}{2-a}+\frac{b}{2-b}+\frac{1}{a+b}\)
\(=\frac{2}{2-a}-1+\frac{2}{2-b}-1+\frac{1}{a+b}=\frac{2}{2-a}+\frac{2}{2-b}+\frac{1}{a+b}-2\)
\(=2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\)
Áp dụng bất đẳng thức sau: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{4-\left(a+b\right)+2\left(a+b\right)}=\frac{9}{4+a+b}\)
Lại có: \(a+b\le1\Rightarrow4+a+b\le5\Rightarrow\frac{9}{4+a+b}\ge\frac{9}{5}\)
\(\Rightarrow\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}\ge\frac{9}{5}\Leftrightarrow2\left(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2\left(a+b\right)}-1\right)\ge\frac{8}{5}\)
\(\Rightarrow S\ge\frac{8}{5}.\)
Vậy \(Min_S=\frac{8}{5}.\)Dấu "=" xảy ra khi \(a=b=\frac{2}{5}.\)
a) Thay x=4 zô là đc . ra kết quả \(\frac{7}{6}\)là dúng
b) \(B=\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\)
\(=>P=A.B=\frac{3\sqrt{x}+1}{x+\sqrt{x}}.\frac{3\left(x+\sqrt{x}\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}=\frac{3}{3\sqrt{x}-1}\)
c) xét \(\frac{1}{P}=\frac{3\sqrt{x}-1}{3}\)
do \(\sqrt{x}\ge0=>3\sqrt{x}-1\ge-1\)\(=>\frac{3\sqrt{x}-1}{3}\ge-\frac{1}{3}\)
\(=>\frac{1}{P}\ge-\frac{1}{3}\)
dấu = xảy ra khi x=0
zậy ..
Cauchy-Schwarz cho 2 mẫu quy về M <= (a+b+2)/(a+b)^2
Đến đây CM M <= 1 ,đặt t=a+b(t >= 2) ,.....
M=\(\frac{a^4}{a\left(b+1\right)^2}+\frac{b^4}{b\left(a+1\right)^2}\)
áp dụng bdt bunhiacopxki ta co
(a+b)M>=\(\left(\frac{a^2}{b+1}+\frac{b^2}{a+1}\right)^2\)
\(\left(\frac{a^2}{b+1}+\frac{b^2}{a+1}\right)^2>=\left[\frac{\left(a+b^2\right)}{a+1+b+1}\right]^2\)
\(=\frac{\left(a+b\right)^4}{\left(a+b+2\right)^2}>=\frac{\left(a+b\right)^4}{4\left(a+b\right)^2}\)(do 2<=a+b)
=\(\frac{\left(a+b\right)^2}{4}\)
do do M(a+b)>=\(\frac{\left(a+b\right)^2}{4}\)
=>M>=\(\frac{a+b}{4}>=\frac{1}{2}\)
dau = xay ra <=> a=b=1
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{12}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z^2\right)}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)