Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)
Từ (1) , (2) , (3)
\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=1\)
Ta có: \(\left\{{}\begin{matrix}3\sqrt{3}a^2+\sqrt{a}+\sqrt{a}\ge3\sqrt{3}a\left(1\right)\\3\sqrt{3}b^2+\sqrt{b}+\sqrt{b}\ge3\sqrt{3}b\left(2\right)\\3\sqrt{3}c^2+\sqrt{c}+\sqrt{c}\ge3\sqrt{3}c\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge3\sqrt{3}\left[\left(a+b+c\right)-\left(a^2+b^2+c^2\right)\right]\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\dfrac{3\sqrt{3}\left[1-\left(a^2+b^2+c^2\right)\right]}{2}\)
\(=\dfrac{3\sqrt{3}\left[1-\left(a+b+c\right)^2+2\left(ab+bc+ca\right)\right]}{2}\)
\(=3\sqrt{3}\left(ab+bc+ca\right)\)
\(\RightarrowĐPCM\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)
Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)
Khi đó ta cần chứng minh:
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)
Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)
Khi đó đẳng thức trên được viết lại thành:
\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)
Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)
Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)
Khi đó bđt đã tro chở thành:
\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
Ta có: \(\sqrt{a+bc}=\sqrt{\dfrac{a^2+abc}{a}}=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\)
thiết lập tương tự ,bất đẳng thức cần chứng minh tương đương:
\(\Leftrightarrow\sum\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a}}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Leftrightarrow\sum\sqrt{bc\left(a+b\right)\left(a+c\right)}\ge abc+\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\Leftrightarrow\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge abc+\sum a\sqrt{bc}\)
Điều này luôn đúng theo BĐT Bunyakovsky:
\(\sum\sqrt{\left(b^2+ab\right)\left(c^2+ac\right)}\ge\sum\left(bc+a\sqrt{bc}\right)=abc+\sum a\sqrt{bc}\)
Dấu = xảy ra khi a=b=c=3
3.
\(\dfrac{2a^2}{b^2}+2\dfrac{b^2}{c^2}+2\dfrac{c^2}{a^2}\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
áp dụng bất đẳng thức cosi
+ \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\dfrac{a}{c}\)
......
tương tự với 2 cái sau
BĐT này không đúng
Ví dụ: với \(a=b=c=0,1\)