Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ta có:
\(a^2+b^2=c^2+d^2\)
\(\Leftrightarrow a^2-c^2=d^2-b^2\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)
Mà \(a+b=c+d\Leftrightarrow a-c=d-b\)
\(\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)
TH1: \(a-c\ne0\)
\(\Rightarrow a+c=d+b\Leftrightarrow a-b=d-c\left(1\right)\)
Lại có: \(a+b=c+d\left(2\right)\)
Cộng (1) và (2) theo vế ta có: \(2a=2d\Leftrightarrow a=d\)\(\Rightarrow b=c\)
\(\Rightarrow a^{2006}=d^{2006}\); \(b^{2006}=c^{2006}\)
\(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)(*)
TH2: \(a-c=0\)
\(\Rightarrow a=c\)\(\Rightarrow b=d\)
\(\Rightarrow a^{2006}=c^{2006};b^{2006}=d^{2006}\)
\(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)(**)
Từ (*) và (**) \(\Rightarrow a^{2006}+b^{2006}=c^{2006}+d^{2006}\)
Thay \(ab+bc+ac=2006\) vào A , ta có :
\(A=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\) là scp
\(\Rightarrow\) ĐPCM
Sửa đề \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta có: \(a^3+b^3+c^3=3ab\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
TH1: a+b+c=0
=> \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)
Thay vào M ta được M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)
\(\Rightarrow M=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow M=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Ta có a+b+c=0\(\Rightarrow\)\(\left(a+b+c\right)^2=0\)\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)\(\Rightarrow a^2+b^2+c^2=0\).Mặt khác ta có :\(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)\(\Rightarrow a=b=c=0\)\(\Rightarrow\)\(M=\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+\left(c-2005\right)^{2006}\)=\(\left(-2005\right)^{2006}+\left(-2005\right)^{2006}+\left(-2005\right)^{2006}\)=\(3.2005^{2006}\)
Bài 2 thôi em dùng đồng dư cho chắc:v
a) \(21^2\equiv41\left(mod200\right)\Rightarrow21^{10}\equiv41^5\equiv1\left(mod200\right)\)
Suy ra đpcm.
b) \(39^2\equiv1\left(mod40\right)\Rightarrow39^{20}\equiv1\left(mod40\right)\)
Mặt khác \(39^2\equiv1\left(mod40\right)\Rightarrow39^{12}\equiv1\Rightarrow39^{13}\equiv39\left(mod40\right)\)
Suy ra \(39^{20}+39^{13}\equiv1+39\equiv40\equiv0\left(mod40\right)\)
Suy ra đpcm
c) Do 41 là số nguyên tố và (2;41) = 1 nên:
\(2^{20}\equiv1\left(mod41\right)\) suy ra \(2^{60}\equiv1\left(mod41\right)\)
Dễ dàng chứng minh \(5^{30}\equiv40\left(mod41\right)\)
Suy ra đpcm.
d) Tương tự
\(a^2+b^2=c^2+d^2\Leftrightarrow a^2-c^2=d^2-b^2\Leftrightarrow\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)
mà a+b=c+d <=> a-c=d-b <=> \(\left(a-c\right)\left(a+c\right)=\left(a-c\right)\left(d+b\right)\)
TH1: a-c\(\ne0\)<=>a+c=d+b<=>a-b=d-c cộng vế với vế với a+b=c+d (gt) <=> 2a=2d <=> a=d <=> b=c
=>a2006=d2006;b2006=c2006=>a2006+b2006=c2006+d2006
TH2: a-c=0 <=> a=c <=> b=d <=> a2006+b2006=c2006+d2006
Từ 2 trường hợp trên suy ra đpcm