K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a+c}{a+c}+\frac{a+b}{a+b}\right)\)

\(\Rightarrow S=2007.\frac{1}{90}-3=\frac{2007-270}{90}\)

10 tháng 12 2018

\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(S+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)+\left(1+\frac{c}{a+b}\right)\)

\(S+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(S+3=\frac{2014.1}{2014}=1\Rightarrow S=1-3=-2\)

25 tháng 1 2019

Đặt : \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=P\)

\(\Rightarrow\left(a+b+c\right).P=\frac{1}{2019}.2019\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{6057}{2019}+\frac{\left(-4038\right)}{2019}\)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=3+\left(-2\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-2\)

25 tháng 1 2019

cảm ơn bạn nhé

30 tháng 12 2016

         Vì \(a+b+c=2016\Rightarrow a=2016-\left(b+c\right);b=2016-\left(a+c\right);c=2016-\left(a+b\right)\)

Ta có:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) 

           \(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(a+c\right)}{a+c}+\frac{2016-\left(a+b\right)}{a+b}\)

           \(S=\frac{2016}{b+c}-1+\frac{2016}{a+c}-1+\frac{2016}{a+b}-1\)

           \(S=2016.\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

           \(S=2016.\frac{1}{2016}-3\)

          \(S=-2\)

6 tháng 4 2017

1 bai thoi cung dc

7 tháng 11 2018

\(S=\left(\frac{c}{a+b}+1\right)+\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)-3\)

\(=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

\(=2001\cdot\frac{1}{10}-3=\frac{1971}{10}\)

17 tháng 1 2021

Ta có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Thay vào biểu thức M ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)

Thay vào biểu thức M ta có: \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

17 tháng 1 2021

\(\text{Nếu a+b+c}=0\text{ thì: }M=-1;a+b+c\text{ khác 0 thì:}\)

áp dụng tc dãy tỉ số bằng nhau ta có: a=b=c => M=8

mk lm tóm tắt vì có nhiều câu giống r

28 tháng 2 2020

\(\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\)\(=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)

Áp dụng bđt AM-GM cho 3 số  thực dương a,b,c ta được:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(c+a\right)^2}{4\left(c+a\right)}\)

\(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a+b+c}{2}\left(1\right)\)

Áp dụng bđt Cauchy-Schwarz dạng engel ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(2\right)\)

Từ (1)  và (2) \(\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{b}+\frac{1}{c}}+\frac{1}{\frac{1}{c}+\frac{1}{a}}\le\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\left(đpcm\right)\)

\(\)