K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

\(A=7+7^2+7^3+...+7^{120}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{118}.57\)

\(A=57\left(7+7^4+...+7^{118}\right)\)

\(\Rightarrow A⋮57\)

26 tháng 12 2021

Sợ quá!

20 tháng 11 2015

A = (2 + 2^2) + (2^3+  2^4)  +...... + (2^119 + 2^120)

A= (2.1+2.2) + (2^3.1 + 2^3.2) + ...... + (2^119.1 + 2^119.2)

A = 2.3 + 2^3.3 + ...... + 2^119.3

A = 3.(2+2^3+......+2^119)

Chia hết cho 3

A = (2 + 2^2 + 2^3)  +...... + (2^118 + 2^119 + 2^120)

A = (2.1 + 2.2 + 2.4) + ....... + (2^118.1 + 2^118.2 + 2^118.4)

A = 2.(1+2+4)  + ...... + 2^118.(1 + 2 + 4)
A=  7.(2 + 2^4 + ...... + 2^118)

Chia hết cho 7        

 

11 tháng 9 2016

\(A=7+7^2+7^3+...+7^{2016}\)

\(A=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2014}+7^{2015}+7^{2016}\right)\)

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2014}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{2014}.57\)

\(A=\left(7+7^4+...+7^{2014}\right).57⋮57\) ( đpcm ) 

11 tháng 9 2016

Ta có :

\(A=7\left(1+7+7^2\right)+.....+7^{2014}\left(1+7+7^2\right)\)

\(\Rightarrow A=7.57+....+7^{2014}.57\)

\(\Rightarrow A=57.\left(7+....+7^{2014}\right)\)

=> A chia hêt cho 57

17 tháng 10 2018

\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{16}.30\)

\(A=30.\left(1+...+2^{16}\right)⋮5\)

B tương tự ( 57=3.19)

cm tổng đó chia hết cho 3 và 19 là đc =)

17 tháng 10 2018

bn có thể trả lời tiếp đc ko

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

29 tháng 9 2017

Gọi phần a, là A,ta có:

A=1+4+42+43+...+42000

4.A=4.(1+4+42+...+42000)

4.A=4+42+43+44+...+42001

4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)

3.A=4+42+43+...+42001 -1-4-42-...-42000

3.A=42001-1

A=(42001-1):3

K CHO MIK NHÉ !

21 tháng 7 2016

              A = 7 + 72 + 73 + .... + 72016        có (2016 - 1) : 1 + 1 = 2016 số hạng

             A = (7 + 72 + 73) + ... + (72014 + 72015 + 72016)

            A = 7 . (1 + 7 + 72) + .... + 72014 . (1 + 7 + 72)

            A = 7 . (1 + 7 + 49) + .... + 72014 . (1 + 7+ 49)

           A = 7 . 57 + ... + 72014 . 57

           A = 57 . (7 + ... + 72014) chia hết cho 57

         => A chia hết cho 57 (ĐPCM)

        Ủng hộ mk nha !!! ^_^

21 tháng 7 2016

A = 7 + 72 + 7+.....+ 72016

A = (7 + 72 + 73) + (74 + 75 + 76) +....+ (72014 + 72015 + 72016)

A = 7(1+7+72) + 74(1+7+72) +....+ 72014(1+7+72)

A = 7.57 + 74.57 +.....+ 72014.57

A = (7 + 74 +....+ 72014).57 chia hết cho 57 (Đpcm)

14 tháng 10 2021

\(a,A=7^{15}+7^{16}+7^{17}\)

\(A=7^{15}\left(1+7+7^2\right)\)

\(A=7^{15}.57\)

Ta có :

\(A=7^{15}.57⋮57\)

\(\Rightarrow A⋮57\)

14 tháng 10 2021

\(b,B=2+2^2+2^3+....+2^{60}\)

\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(B=2.7+...+2^{58}.7\)

\(B=7\left(2+2^4+....+2^{58}\right)\)

Ta có :

\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(\Rightarrow B⋮7\)

8 tháng 12 2014

a

M=(7+7^2)+(7^3+7^4)+...+(7^59+7^60)

  =7.(7+1)+7^3.(7+1)+...+7^59+(7+1)  

  =7.8+7^3.8+...+7^59+8

=>M chia hết cho8