K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

1+1=2

2 tháng 11 2023

                                giải:

A=22+22+23+...+2100

2A=2(22+22+23+...+2100)

2A=23+23+24+...+2101

2A-A=(23+23+24+...+2101)-(22+22+23+...+2100)

A=2101+23-22-22

A=2101+8-8

A=2101

vậy A là 1 lũy thừa của 2

15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha

17 tháng 1 2017

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

24 tháng 9 2017

Minh Quân yêu Thanh Hiền

28 tháng 6 2015

A=4+22+23+...+220

Đặt B=22+23+...+220

=>2B=23+24+...+221

=>2B-B=221-22=221-4

=>A=4+B=4+221-4=221

=>A là lũy thừa của 2(ĐPCM)

b)A=3+32+33+...+3100

=>3A=32+33+...+3101

=>3A-A=3101-3

=>2A=3101-3

=>2A+3=3101-3+3=3101

Vậy 2A+3 là lũy thừa của 3(ĐPCM)

28 tháng 6 2015

a/

\(2A=8+2^3+...+2^{21}\)

\(2A-A=A=2^{21}+8-4-2^2=2^{21}\)

b/

\(3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=2B=3^{101}-3\)

\(\Rightarrow2B+3=3^{101}\)

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.

14 tháng 11 2017

a, Có : A = (2+2^2++2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)

= 30 + 2^4.(2+2^2+2^3+2^4)+....+2^96.(2+2^2+2^3+2^4)

= 30 + 2^4.30 + .... + 2^96.30 

= 30.(1+2^4+....+2^96) chia hết cho 30

=> A chia hết cho 10

b, Có : 2A = 2^2+2^3+....+2^101

A=2A-A=(2^2+2^3+....+2^101)-(2+2^2+2^3+....+2^100) = 2^101 - 2

=> A + 2 = 2^101 là lũy thừa của 2

=> ĐPCM

30 tháng 9 2015

a) B = 3 + 32 + ... + 32005

3B = 32 + 33 + ... + 32006

3B - B = 32006 - 3 

2B = 32006 - 3

Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006

25 tháng 12 2015

 4= 30+31(làm ra nháp)

S= 3+32+33+...+3100

S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)

S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)

S=3x4+3^3x4+3^5x4+...+3^99x4

S=4x(3+3^3+3^5+...+3^99)

=> S chia hết cho 4.

 

 

22 tháng 3 2021

Đặt Tên Chi

Tìm kiếm

Báo cáo

Đánh dấu

24 tháng 12 2015 lúc 20:28

Cho S=3+32+33+........+3100

a, Chứng minh rằng S chia hết cho 4.

b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3

Toán lớp 6

19 tháng 12 2024

Ko biết