Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(2x-3\right)\left(3x+2\right)-2\left(x-4\right)\left(4x-3\right)+9x\left(4-x\right)-6=0\)
<=> \(2\left(6x^2-5x-6\right)-2\left(4x^2+13x-12\right)+25x-9x^2-6=0\)
<=> \(12x^2-10x-12-4x^2-26x+24+25x-9x^2-6=0\)
<=>\(-x^2-11x+6=0\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{-11+\sqrt{145}}{2}\\x=\frac{-11-\sqrt{145}}{2}\end{array}\right.\)
a: ĐKXĐ: x<>2; x<>-2
b: \(A=\dfrac{3x\left(x-2\right)+2x+6}{2\left(x-2\right)\left(x+2\right)}=\dfrac{3x^2-6x+2x+6}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+4x+6}{2\left(x-2\right)\left(x+2\right)}\)
c: Khi x=-3 thì \(A=\dfrac{3\cdot\left(-3\right)^2-4\cdot3+6}{2\left(-3-2\right)\left(-3+2\right)}=\dfrac{21}{10}\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3
Phân thức xác định
\(\Leftrightarrow2x^2-2\ne0\)
\(\Leftrightarrow2\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Vậy phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Đặt \(A=\frac{4x-4}{2x^2-2}=\frac{4\left(x-1\right)}{2\left(x^2-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{x+1}\)
Thay x=-2 vào A ta có: \(A=\frac{2}{-2+1}=\frac{2}{-1}=-2\)
Vậy \(A=-2\)tại x=-2
Ta có: \(x\in Z\Rightarrow x+1\in Z\)
\(A\in Z\Leftrightarrow\left(x+1\right)\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)
đến đây b tự làm nhé~
\(A=3\left(2x-3\right)\left(3x+2\right)-\left(2x+4\right)\left(4x-3\right)+9x\left(4-x\right)\)
\(=\left(6x-9\right)\left(3x+2\right)-8x^2+6x-16x+12+36x-9x^2\)
\(=18x^2+12x-27x-18-17x^2+26x+12\)
\(=x^2+11x-6\)
Để A = 0
\(\Leftrightarrow x^2+11x-6=0\)
\(\Leftrightarrow\left(x^2+11x+\frac{121}{4}\right)-\frac{145}{4}=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}\right)^2-\left(\frac{\sqrt{145}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{11}{2}-\frac{\sqrt{145}}{2}\right)\left(x+\frac{11}{2}+\frac{\sqrt{145}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{145}-11}{2}\\x=\frac{-\sqrt{145}-11}{2}\end{matrix}\right.\)
Vậy..................