K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

A=2X2^2012+2^2X2^2012+2X2^2014+2^2X2^2014+2X2^2016+2^2X2^2016                                                                                                   A=2^2012X(2+2^2)+2^2014X(2+2+2^2)+2^20116X(2+2^2)                                                                                                                               A=2^2012X6+2^2014X6+2^2016X6                                                                                                                                                                   A=6X(2^2012+2^2014+2016)                                                                                                                                                                                  Vì 6x(2^2012+2^2014+2^20160 chia hết cho 6 suy ra A chia hết cho 6. Vì A chia hết cho 6 nên A là bội của 6                                          CHÚC HỌC TỐT

19 tháng 12 2018

\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)

\(A=2^{2011}.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(A=2^{2011}.63=2^{2011}.3.21⋮21\)

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

17 tháng 2 2020

a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015

S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015

S1 = (-1) + (-1) + ... + (-1) + 2015

2014 : 2 = 1007

S1 = (-1) . 1007 + 2015

S1 = (-1007) + 2015

S1 = 1008

b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016

S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]

S2 = 2 + 2 + ... 2

2016 : 2 = 1008

S2 = 2 . 1008

S2 = 2016

c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)

S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]

S3 = (-2) + (-2) + ... + (-2)

(2015 - 1) : 2 + 1 = 1008 : 2 = 504

S3 = (-2) . 504

S3 = -1008

d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016

S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0

S4 = 2016 + 0

S4 = 2016

17 tháng 2 2020

a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)

b, làm tương tự phần a

c, cũng làm tương tự

d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)

a. Ta có :

\(\frac{\left(2017^{2018}-2017^{2017}\right)}{2017^{2016}}=\frac{2017^{2017}\cdot\left(2017-1\right)}{2017^{2016}}=2017\cdot2016\)

VẬY A CÓ CHỮ SỐ TẦN CỤNG LÀ 2

b. Đề có sai không bạn ví dụ 909 có 2 chữ số giống nhau và là số tự nhiên nhưng đâu chia hết cho 37 đâu 

11 tháng 10 2018

Ko chứng tỏ đc thì chứng tỏ nó sai ! Bạn biết làm cách đấy ko ?

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta có:
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)

\(S> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)

\(\Leftrightarrow S> \frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2016-2015}{2015.2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(\Leftrightarrow S> \frac{1}{2}-\frac{1}{2016}=\frac{1007}{2016}\)

--------------------------

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2014}{2015}\)

\(\Leftrightarrow S< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2015-2014}{2014.2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2014}-\frac{1}{2015}\)

\(\Leftrightarrow S< 1-\frac{1}{2015}=\frac{2014}{2015}\)

Vậy ta có đpcm.