K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

a,

Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2

Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:

a=3k hoạc a=3k+1 hoặc a=3k+2

* Nếu a=3k thì a sẽ chia hết cho 2.                                                                                   (1)

* Nếu a=3k+2 thì a+1=3k+2

                          a    =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3                                                                                          (2)

* Nếu a=3k+1 thì a+2=3k+1

                          a   =3k+3

Vì 3k chia hết cho 3

     3 chia hết cho 3

=>  3k+3 chia hết cho 3 hay a+2 chia hết cho 3                                                                                         (3)

Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

25 tháng 5 2015

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

25 tháng 5 2015

Bạn vào mục câu hỏi tương tự ấy!

22 tháng 11 2014

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

4 tháng 3 2018

Ta có : A =  2011 +  2011+ 2011+ .... + 20112011

=> A = 2011(1+2011+ 2011+ .... + 20112010)

=> A lẻ 

=> A không chia hết cho 2012

29 tháng 3 2019

Bài 1: Mình không biết làm.

Bài 2:

TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)

=> (n+20102011) chia hết cho 2.

Nên (n+20102011)(n+2011) chia hết cho 2

TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)

=> n + 2011 chia hết cho 2

Nên (n+20102011)(n+2011) chia hết cho 2

Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N

6 tháng 12 2020

\(S=3^1+3^3+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)

\(=28+3^3.90+3^7.90+...+3^{2011}.90\)ko chia hết cho 9