K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

Ta có 

B= 2000/2001+2002 + 2001/2001+2002.                                                          

Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.              

Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.      

Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002                            

Suy ra B < A

4 tháng 5 2016

Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)

2001/2002 > 2001/2001+2002(2)

Cộng các bất đẳng thức (1) và (2)  vế với nhau:

Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B

11 tháng 4 2016

kl của bạn sai nhưng mình vẫn tìm ra :

A>B

đề lạ zậy ko so sánh mà bảo so sánh!!!!!!! chả hỉu *_*!

765885

31 tháng 3 2016

B=2000+1+2002=4003

A=2000/2001+2001/2002

=2002.(2000+2001)/2001.2002

=2000+2001/2001<1

Mà B>1 suy ra A<B

27 tháng 4 2016

ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)

\(\Rightarrow A

27 tháng 4 2016

ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)

\(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)

\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)

=>A>B

11 tháng 7 2021

A=B (do 2 phân số giống nhau)

11 tháng 7 2021

Ta có: \(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)\(B=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)

\(\dfrac{2000}{2001}+\dfrac{2001}{2002}=\dfrac{2000}{2001}+\dfrac{2001}{2002}\)

Vậy A=B

31 tháng 3 2015

                                         Giải

Ta có\(A=\frac{2002}{2001}+\frac{2001}{2002}\)và \(B=\frac{2000}{2001}+\frac{2001}{2002}\)

Ta nhận xét thấy A và B cùng có chung 1 số hạng là \(\frac{2001}{2002}\)

Nên ta chỉ so sánh \(\frac{2002}{2001}\)và \(\frac{2000}{2001}\)ta so sánh 2 phân số đó với 1

Vì 2002>2001 nên \(\frac{2002}{2001}\)> 1

Vì 2000<2001 nên \(\frac{2000}{2001}\)<1

\(\Leftrightarrow\)\(\frac{2002}{2001}>\frac{2000}{2001}\)

\(\Leftrightarrow\)\(\frac{2002}{2001}+\frac{2001}{2002}>\frac{2000}{2001}+\frac{2001}{2002}\)

Vậy A>B

4 tháng 5 2016

Ta có:

\(\frac{2000}{2001}\)\(\frac{2000}{2001+2002}\)(1)

\(\frac{2001}{2002}\)\(\frac{2001}{2001+2002}\)(2)

Cộng các bất đẳng thức (1) và ( 2) vế với nhau:

Vậy \(\frac{2000}{2001}\)\(\frac{2001}{2002}\)\(\frac{2000+2001}{2001+2002}\)hay A > B.

10 tháng 5 2015

Trong phần câu hỏi tương tự có đó!                                                    

7 tháng 10 2020

Ta có \(\frac{2000}{2001}=1-\frac{1}{2001}\)

          \(\frac{2001}{2002}=1-\frac{1}{2002}\)

Vì \(\frac{1}{2001}>\frac{1}{2002}\)

=> \(1-\frac{1}{2001}< 1-\frac{1}{2002}\)

=> \(\frac{2000}{2001}< \frac{2001}{2002}\)

8 tháng 10 2020

ta thấy                                                                                                                                                                                      \(1=\frac{2000}{2001}+\frac{1}{2001}\)

\(1=\frac{2001}{2002}+\frac{1}{2002}\)

  mà \(\frac{1}{2001}\) \(>\frac{1}{2002}\)   ( phần bù )

   \(\frac{\Rightarrow2000}{2001}< \frac{2001}{2002}\)