Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện để A xác định là:
\(m-1< 8\)
\(\Leftrightarrow m< 8+1\Leftrightarrow m< 9\)
Để: \(A\backslash B=\varnothing\)
\(\Leftrightarrow A\subset B\) \(\Rightarrow2\le m-1\)
\(\Leftrightarrow m\ge3\)
kết hợp với điều kiện:
\(\Rightarrow3\le m< 9\)
\(A=\left[m;m+1\right]\)
\(B=\left[0;3\right]\)
\(A\cap B=\varnothing\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1< 0\\m>3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\) thỏa mãn đề bài
Lời giải:
Để \(B\subset A\) \(\left\{\begin{matrix} m+1\leq 1\\ m^2+2\geq 6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\leq 0\\ m^2\geq 4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} m\leq 0\\ (m-2)(m+2)\geq 0\end{matrix}\right.\)
\(\Leftrightarrow m\leq -2\)