K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

A = 1 + 5 + 52 + 53 + ... + 597 + 598 + 599

A = ( 1 + 5 + 52 ) + ( 53 + 54 + 55) + ... + ( 597 + 598 + 599 ) 

A = ( 1 + 5 + 52 )  + 53 ( 1 + 5 + 52 ) + ... + 597( 1 + 5 + 52 ) 

A = 31 ( 1 + 53 + ... + 597 ) 

=> A chia hết cho 31

17 tháng 1 2019

ban oi mk thay A ko chia het cho 31 vi gop 3 so moi chia het ma co 100 so thi gop 3 so se du 1 so 5^99

neu 5^99 chia het cho 31 thi A moi chia het cho 31 

neu sai mong cac ban thong cam nha

17 tháng 12 2016

(3x - 1)3 = 125

(3x - 1)3 = 53

=>3x - 1 = 5

3x = 5 + 1

3x = 6

x = 6 : 3

x = 2

A = 1+5+52+53+...+597+598

A = (1 + 5 + 52) + (53 + 54 + 55) + ... + (596 + 597 + 598)

A = 1(1 + 5 + 52) + 53(1 + 5 + 52) + ... + 596(1 + 5 + 52)

A = 1.31 + 53.31 + ... + 596.31

A = 31(1 + 53 + ... + 596)

Vì 31(1 + 53 + ... + 596) \(⋮\)nên A \(⋮\)31

Vậy A \(⋮\)31

17 tháng 12 2016

a, \(\left(3x-1\right)^3=125\Leftrightarrow\left(3x-1\right)^3=5^3\)

\(\Rightarrow3x-1=5\Rightarrow3x=5+1\Rightarrow3x=6\Rightarrow x=6\div3=2\)

Vậy x = 2

b, Xét dãy số mũ : 0;1;2;3;...;97;98

Số số hạng của dãy số trên là :

\(\left(98-0\right)\div1+1=99\) ( số )

Ta được số nhóm là :

\(99\div3=33\) ( nhóm )

Ta có : \(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\) (33 nhóm )

\(A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{96}\left(1+5+5^2\right)\)

\(A=1.31+5^3.31+...+5^{96}.31=\left(1+5^3+...+5^{96}\right).31\)

Mà : \(31⋮31;1+5^3+...+5^{96}\in N\Rightarrow A⋮31\) (đpcm)

2 tháng 12 2018

trả ơn = j?

2 tháng 12 2018

a) góp 3 số hạng lại,lấy thừa số chung là số 5

b)n+12:n+1

n+1+11:n+1

n+1:n+1,suy ra 11:n+1,suy ra n+1 thuộc Ư(11)={1,11}

=n+1=1 thì n=1-1=0

=n+1=11 thì n=1-11=10

vậy n={0,10}

16 tháng 12 2014

Số số hạng: (99-0):1+1=99(số hạng)

1+5+5^2+...+5^99=(1+5+5^2)+5^3x(1+5+5^2)+5^6x(1+5+5^2)+...+5^97x(1+5+5^2)      [vì có 99 số hạng chia hết cho 3]

                          =31+5^3x31+5^6x31+...+5^97x31=(1+5^3+5^6+...+5^97)x31 chia hết cho 31.

 

 

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

29 tháng 7 2018

a)  \(B=1+3+3^2+3^3+....+3^{99}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+2^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\)

\(=40\left(1+3^4+....+3^{96}\right)\)\(⋮\)\(40\)

b)  \(3^4+3^5+3^6+3^7=3^4\left(1+3+3^2+3^3\right)=40.3^4\)

17 tháng 1 2019

em mới học lớp 5 thôi nên em ko chả lời được.

17 tháng 1 2019

\(A=1+5+5^2+..........+5^{97}+5^{98}+5^{99}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...........+\left(5^{97}+5^{98}+5^{99}\right)\)

\(=31+5^3\left(1+5+5^2\right)+.........+5^{57}\left(1+5+^2\right)\)

\(=32+5^3.31+..........+5^{97}.31⋮31\left(ĐPCM\right)\)

18 tháng 10 2015

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng 

Ta có 

A=(1+5+5^2)+(5^3+5^4+5^5)+...+(5^96+5^97+5^98)

=> A=31+5^3(1+5+5^2)+...+5^96(1+5+5^2)

=> A=31+5^3.31+...+5^96.31

=> A=31(1+5^3+..+5^96) CHIA HẾT CHO 31 (tick né)