Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{50}-\frac{1}{51}\)
\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)
\(\Rightarrow A>\frac{1}{4}+\frac{42}{9.51}>\frac{1}{4}\)
Vậy A>1/4
b)
Ta có
\(A< \frac{1}{3}^2+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\)
\(\Rightarrow A< \frac{1}{9}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{50}\)
\(\Rightarrow A< \frac{4}{9}-\frac{1}{50}< \frac{4}{9}\)
Vậy A<4/9
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
b) Ta thấy : 21 = 3 .7 ( 3 ; 7 ) = 1
để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7
Ta có :
B = 21 + 22 + 23 + 24 + ... + 230
B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )
B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )
B = 2 . 3 + 23 . 3 + ... + 229 . 3
B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )
Lại có : B = 21 + 22 + 23 + 24 + ... + 230
B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )
B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )
B = 2 . 7 + 24 . 7 + ... + 228 . 7
B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)B \(⋮\)21
đặt B=1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)
từ (1),(2),(3) =>A<2
Ta có :
\(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{5}{10}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{4}{10}=\frac{2}{5}\left(1\right)\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)
Từ ( 1 ) , ( 2 ) => ĐPCM
Chúc bạn học tốt !!!
Đề sai bạn nhé :
Đề đúng :
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)
CM : \(\frac{2}{5}< A< \frac{8}{9}\)
bạn giải đi
Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153 > 48/192 =1/4. ĐPCM
Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM