Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2015^2 < 1/2014.2015
Suy ra: 1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1/1.2 +1/2.3+...+1/2014.2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1-1/2+1/2-1/3+...+1/2014-1/2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 1-1/2015
1/2^2 + 1/3^2 + 1/4^2+...+1/2015^2 < 2014/2015
Mình nghĩ đây là cách làm, bạn thử dựa vào làm xem nhé!
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
Có : \(\dfrac{1}{2^2}\) < \(\dfrac{1}{4}\)
\(\dfrac{1}{3 ^2}\) < \(\dfrac{1}{2.3}\)
...
\(\dfrac{1}{2015^2}\) < \(\dfrac{1}{2014.2015}\)
\(\Rightarrow\) A< \(\dfrac{1}{4}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{2014.2015}\)
= \(\dfrac{1}{4}\) + \(\dfrac{1}{2} -\dfrac{1}{3}\) + ... + \(\dfrac{1}{2014} -\dfrac{1}{2015}\)
= \(\dfrac{1}{4}+\dfrac{1}{2} -\dfrac{1}{2015}\)
=\(\dfrac{3}{4}- \dfrac{1}{2015} \)
\(\Rightarrow\)A<\(\dfrac{3}{4}\)(đpcm)
chúc bạn học tốt !!!! nhớ tick mình nhé