K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

ta thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{4}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

...

\(\dfrac{1}{2015^2}< \dfrac{1}{2014.2015}\)

=> A < \(\dfrac{1}{4}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}\right)\)

=> A< \(\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)

<=> A< \(\dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{2015}\right)\) = \(\dfrac{3}{4}-\dfrac{1}{2015}\) < \(\dfrac{3}{4}\).

=> đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

\(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)

Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)

\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)

Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)

Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)

Thực hiện tương tự, suy ra

\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)

\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)

Ta có đpcm

19 tháng 11 2018

Bài 3: a) Xét A=(1+1/2+1/3+....+1/98).2.3.4.5.....98

=(1+1/2+1/3+....+1/98).(9.11).2.3.4.....98

=(1+1/2+1/3+....+1/98).99.2.3.4....98⋮99
(đpcm)