K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Ta có : 
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2^2}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A< \left(\frac{1}{4}+\frac{1}{2}\right)-\frac{1}{100}\)

\(\Rightarrow A< \frac{3}{4}-\frac{1}{100}\)

\(\Rightarrow A< \frac{3}{4}\left(Đpcm\right)\)

~ Ủng hộ nhé

29 tháng 5 2018

1/100^2 mình đánh nhầm

2 tháng 9 2017

Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)

Nên \(A< B\)

\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)

\(\Rightarrow A.B=\frac{1}{201}\)

Vì \(A< B\)

\(\Rightarrow A^2< A.B=\frac{1}{201}\)

\(\Rightarrow A^2< \frac{1}{201}\)

\(\RightarrowĐPCM\)

4 tháng 7 2018

M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)

=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)

=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))

4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)

=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)\(\frac{1}{4}\)

22 tháng 3 2017

Cho mình xin lỗi là < 1 chứ không phải 11 đâu