K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

F thuộc AC nha

24 tháng 5 2016

Vẽ CQ vuông góc đường thẳng OA tại Q.

mà OB vuông góc OA (vì góc xOy vuông)

\(\Rightarrow OB\) song song CQ

\(\Delta ACQ\)có B là trung điểm AC

                     OB song song CQ (cmt)

\(\Rightarrow\)O là trung điểm AQ hay Q đối xứng A qua O

* VẬY bất kỳ vị trí của điểm B trên tia Ox thì điểm C luôn di chuyển trên đường thẳng đối xứng với A qua O và vuông góc với OA

11 tháng 10 2021

điên ok

11 tháng 10 2021

TL

a) Xét tứ giác AEMD có

ˆEAD=900EAD^=900(ˆBAC=900BAC^=900, E∈AC, D∈AB)

ˆAEM=900AEM^=900(ME⊥AC)

ˆADM=900ADM^=900(MD⊥AB)

Do đó: AEMD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b)

Ta có: K và M đối xứng nhau qua E(gt)

nên E là trung điểm của KM

Xét ΔAKM có

AE là đường cao ứng với cạnh KM(AE⊥ME, K∈ME)

AE là đường trung tuyến ứng với cạnh KM(E là trung điểm của KM)

Do đó: ΔAKM cân tại A(Định lí tam giác cân)

mà AE là đường trung tuyến ứng với cạnh đáy KM(E là trung điểm của KM)

nên AE là tia phân giác của ˆKAMKAM^(Định lí tam giác cân)

hay ˆKAE=ˆMAEKAE^=MAE^

Ta có: M và P đối xứng nhau qua D(gt)

nên D là trung điểm của MP

Xét ΔAMP có

AD là đường cao ứng với cạnh MP(AD⊥MD, P∈MD)

AD là đường trung tuyến ứng với cạnh MP(D là trung điểm của MP)

Do đó: ΔAMP cân tại A(Định lí tam giác cân)

mà AD là đường trung tuyến ứng với cạnh đáy MP(D là trung điểm của MP)

nên AD là tia phân giác của ˆMAPMAP^(Định lí tam giác cân)

hay ˆPAD=ˆMADPAD^=MAD^

Ta có: tia AM nằm giữa hai tia AE, AD

nên ˆEAM+ˆDAM=ˆEADEAM^+DAM^=EAD^

hay ˆEAM+ˆDAM=900EAM^+DAM^=900

Ta có: ˆKAP=ˆKAE+ˆMAE+ˆMAD+ˆPADKAP^=KAE^+MAE^+MAD^+PAD^

⇔ˆKAP=2⋅(ˆMAE+ˆMAD)⇔KAP^=2⋅(MAE^+MAD^)

⇔ˆKAP=2⋅900=1800⇔KAP^=2⋅900=1800

⇔K,A,P thẳng hàng(1)

Ta có: ΔAKM cân tại A(cmt)

nên AK=AM

Ta có: ΔAMP cân tại A(cmt)

nên AM=AP

mà AK=AM(cmt)

nên AP=AK(2)

Từ (1) và (2) suy ra A là trung điểm của KP

hay P đối xứng với K qua A(đpcm)

HT