K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Cậu đăng từng ý mình giải cho

22 tháng 1 2017

cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU

11 tháng 3 2017

Ta có : 

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{y+z+t}< \frac{y+x}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

Do đó M ko nhận giá trị nguyên

11 tháng 3 2017

mình biết làm nhưng ghi phân  số mỏi tay quá

16 tháng 6 2015

Vì \(b=\frac{a+c}{2}\)

=>2b=a+c (1)

Do \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{1}{2}.\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{bd}=\frac{b+d}{2bd}\)

=>\(\frac{1}{c}=\frac{b+d}{bd}\)

=>2bd=(b+d).c=bc+dc (2)

Từ (1) và (2) ta thấy:

    2bd=(a+c).d=ad+cd=bc+dc

=>ad=bc

Đẳng thức này chứng tỏ 4 số a,b,c,d lập nên 1 tỉ lệ thức.

=>ĐPCM

24 tháng 1 2018

âygiống mình đấy hihi hôm nay vừa lên bang 0 nha

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha