Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ tỉ lệ thức đã cho
=>(3a+4b)(5c-6d)=(3c+4d)(5a-6b)
=>15ac-18ad+20bc-24bd=15ac+20ad-18bc-24bd
=>-18ad+20bc=20ad-18bc
=>-18ad-20ad=-18bc-20bc
=>-38ad=-38bc
=>ad=bc
=>a/b=c/d
=>
Ta có: \(3a=7b\Rightarrow\dfrac{a}{7}=\dfrac{b}{3}\)
\(4b=3c\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\)
Khi đó: \(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{7}=\dfrac{4b}{12}=\dfrac{5c}{20}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{7}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{7+12-20}=\dfrac{-30}{-1}=30\)
Do \(\left\{{}\begin{matrix}\dfrac{a}{7}=30\\\dfrac{4b}{12}=30\\\dfrac{5c}{20}=30\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\).
Từ đề ta có: \(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{7}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{4b}{12}=\dfrac{5c}{20}=\dfrac{a+4b-5c}{7+12-20}=\dfrac{-30}{-1}=30\)
\(\Rightarrow\left\{{}\begin{matrix}a=30\cdot7\\b=30\cdot3\\c=30\cdot4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=210\\b=90\\c=120\end{matrix}\right.\)
Vậy..........
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a-b}{\dfrac{3}{2}-\dfrac{4}{3}}=\dfrac{28}{\dfrac{1}{6}}=168\)
Do đó: a=252; b=224; c=210
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
=> \(\dfrac{3a+4b}{3c+4d}=\dfrac{5a-6b}{5c-6d}\)
ta có
\(\dfrac{3a+4b}{3c+4d}=\dfrac{3a}{3c}=\dfrac{4b}{4d}=\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)
Ta có:
\(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
\(\Leftrightarrow\left(3a+4b\right)\left(5c-6d\right)=\left(3c+4d\right)\left(5a-6b\right)\)
\(\Rightarrow15ac-18ad+20bc-24bd=15ac-18bc+20ad-24bd\)
\(\Rightarrow15ac-15ac-18ad-20ad=-24bd+24bd-18bc-20bc\)
\(\Rightarrow-38ad=-38bc\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)