K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.

Theo quy tắc của ba điểm của tổng, ta có

\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)

Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)

Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)

I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)

Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)





22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NB}+\overrightarrow{DM}+\overrightarrow{MN}+\overrightarrow{NC}\)

\(=2\overrightarrow{MN}+\left(\overrightarrow{AM}+\overrightarrow{DM}\right)+\left(\overrightarrow{NB}+\overrightarrow{NC}\right)=2\overrightarrow{MN}\left(đpcm\right)\)

b) ta có : \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AI}+\overrightarrow{IJ}+\overrightarrow{JB}+\overrightarrow{CI}+\overrightarrow{IJ}+\overrightarrow{JD}\)

\(=2\overrightarrow{IJ}+\left(\overrightarrow{AI}+\overrightarrow{CI}\right)+\left(\overrightarrow{JB}+\overrightarrow{JD}\right)=2\overrightarrow{IJ}\left(đpcm\right)\)

bn dùng định lí ta lét chứng minh được \(\overrightarrow{MJ}=\overrightarrow{IN}=\dfrac{1}{2}\overrightarrow{AB}\)

C) ta có : \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{BN}+\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{MA}+\overrightarrow{BJ}\right)+\left(\overrightarrow{BN}+\overrightarrow{IA}\right)\)

\(=2\overrightarrow{AB}+\left(\overrightarrow{DM}+\overrightarrow{JD}\right)+\left(\overrightarrow{NC}+\overrightarrow{CI}\right)=2\overrightarrow{AB}+\overrightarrow{JM}+\overrightarrow{NI}\) \(=2\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{AB}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}+\overrightarrow{JM}+\overrightarrow{IN}=\overrightarrow{IJ}\left(đpcm\right)\)

22 tháng 7 2018

không sao đâu ; mk cam đoan là đúng hoàn toàn

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó? 3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB Chứng minh \(\overrightarrow{BC'}\)...
Đọc tiếp

1. Cho ba điểm A,B,C phân biệt không thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

2. Cho năm điểm A,B,C,D,E phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu vecto khác \(\overrightarrow{0}\)có điểm đầu điểm cuối là các điểm đó?

3. Cho tam giác ABC có A', B', C' lần lượt trung điểm của BC, CA, AB

Chứng minh \(\overrightarrow{BC'}\) =\(\overrightarrow{C'A}\) =\(\overrightarrow{A'B'}\)

4. Cho vecto \(\overrightarrow{AB}\)và một điểm C. Hãy dựng điểm D sao cho \(\overrightarrow{AB}\) =\(\overrightarrow{CD}\)

5. Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh \(\overrightarrow{MP}\) =\(\overrightarrow{QN}\) , \(\overrightarrow{MQ}\)=\(\overrightarrow{PN}\)

6. Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Chứng minh rằng

(1) \(\overrightarrow{AB}\) -\(\overrightarrow{BC}\) =\(\overrightarrow{DB}\) , | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= AC

(2) Nếu | \(\overrightarrow{AB}\) + \(\overrightarrow{AD}\) |= | \(\overrightarrow{CB}\) - \(\overrightarrow{CD}\) | thì ABCD là hình chữ nhật

7. Cho tam giác ABC đều có độ dài cạnh là a. Tính độ dài các vecto \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) , \(\overrightarrow{AB}\) - \(\overrightarrow{BC}\)

0
10 tháng 9 2020

Có: \(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\overrightarrow{AD}+\overrightarrow{DB}=\overrightarrow{DB}+\overrightarrow{BC}\)\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\) (dpcm)

17 tháng 8 2019

a) Chữa đề: \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(Ta\text{ }có:\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AB}\\ =\overrightarrow{CB}+\overrightarrow{DA}+\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=\overrightarrow{CB}+\overrightarrow{DA}\)

\(\)\(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{DC}\\ =2\overrightarrow{CM}+2\overrightarrow{NC}=2\left(\overrightarrow{NC}+\overrightarrow{CM}\right)=2\overrightarrow{NM}\)

Vậy \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(\text{b) }\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=-\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{CA}+\overrightarrow{CB}\right)\\ =-\left[\left(\overrightarrow{DA}+\overrightarrow{DB}\right)+\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\right]\\ =-\left(2\overrightarrow{DM}+2\overrightarrow{CM}\right)=2\left(\overrightarrow{MD}+\overrightarrow{MC}\right)=4\left(\overrightarrow{MN}\right)\)

\(\text{c) }2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{DA}\right)+\left(\overrightarrow{AI}+\overrightarrow{NA}\right)\right]\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{DB}\right)+\overrightarrow{NI}\right]=2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)\)

Mà IN là dường trung bình \(\Delta BCD\)

\(\Rightarrow\left\{{}\begin{matrix}IN//BD\\IN=\frac{1}{2}BD\end{matrix}\right.\Rightarrow\overrightarrow{IN}=\frac{1}{2}\overrightarrow{BD}\\ \Rightarrow2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)=2\left(\overrightarrow{DB}+\frac{1}{2}\overrightarrow{DB}\right)=2\cdot\frac{3}{2}\overrightarrow{DB}=3\overrightarrow{DB}\)

30 tháng 3 2017

Câu C: \(\overrightarrow{IA}=-\overrightarrow{IB}\)

23 tháng 7 2018

quá dễ