Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html
Lời giải:
$3x-4y=0\Rightarrow 3x=4y\Rightarrow \frac{x}{4}=\frac{y}{3}$
Đặt $\frac{x}{4}=\frac{y}{3}=a$
$\Rightarrow x=4a; y=3a$
$\Rightarrow x^2+y^2=(4a)^2+(3a)^2=25a^2\geq 0$ với mọi $a\in\mathbb{R}$
$\Rightarrow x^2+y^2$ nhận giá trị nhỏ nhất bằng $0$
Giá trị này đạt tại $a=0\Leftrightarrow x=y=0$
1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
Ta có ( 3x-2y-1)2 \(\ge0\), với mọi x;y
( 1-0,25y)2 \(\ge0\), với mọi y
=> (3x-2y-1)2 + (1-0,25y)2 -3 \(\ge-3\), với mọi x;y
=> m \(\ge-3\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}\left(3x-2y-1\right)^2=0\\\left(1-0,25y\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}3x-2y=1\\0,25y=1\end{cases}< =>\hept{\begin{cases}3x-2y=1\\y=4\end{cases}}}\)
<=> \(\hept{\begin{cases}3x-8=1\\y=4\end{cases}< =>\hept{\begin{cases}x=3\\y=4\end{cases}}}\)
Vậy M min = -3 <=>\(\hept{\begin{cases}x=3\\y=4\end{cases}}\)
A=4x2+4x+11=(4x2+4x+1)+10=(2x+1)2+10
vì (2x+1)2 \(\ge\)0
\(\Rightarrow\)A=(2x+1)2+10\(\ge\)10
dấu ''='' xảy ra \(\Leftrightarrow\)x=\(-\frac{1}{2}\)
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
\(N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)
Ta có : \(\left(x-\frac{2}{7}\right)^{2008}\ge0\);\(\left(0,2-\frac{1}{5y}\right)^{2010}\ge0\)
\(\Rightarrow N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)
Dấu "=" xảy ra khi Min \(N=0+0+1=1\)
3x-4y=0=>3x=4y=>x=4y/3
bn thay x vào rồi lm tiếp
ko co dk ak