Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài của lớp 7 ghê vậy!!
Áp dụng bất đẳng thức Cauchy cho 3 số dương x,y,z
ta có bổ đề \((a+b+c)({1\over a}+{1\over b}+{1\over c})\) > 9
Áp dụng vào ta có
\(D*({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z})\) >9(1)
Ta có \({2x+y+z\over x}+{2y+x+z\over y}+{2z+y+x\over z}\) =\(2+{y+z\over x}+2+{z+x\over y}+2+{y+x\over z}\)=\(6-3+{y+z\over x}+1+{z+x\over y}+1+{y+x\over z}+1\)=\(3+{x+y+z\over x}+{y+x+z\over y}+{z+y+x\over z}\)=\(3+(x+y+z)({1\over x}+{1\over y}+{1\over z})\) > 3+9=12
thay vào(1)
Ta có \(D \) < \({9\over 12}\)=\({3\over 4}\)
Dấu "=" xảy ra khi x=y=z
=> ĐPCM
áp dụng bất đẳng thức phụ : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(\frac{y}{2y+x+z}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)
\(\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
cộng vế theo vế
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{1}{4}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{1}{4}\cdot3=\frac{3}{4}\)(đpcm)
bài này hay, áp dụng t/c tỷ lệ thức có;
=\(\frac{y+x+y+x}{x-z+z+y}\)= 2(x+y)/(x+y) =2
<=> x/y = 2
Ta có: \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\times\left(x+y\right)}{x+y}=2\)
Vậy \(\frac{x}{y}=2\)