K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}=\frac{\left(x+y+z\right)^4}{27}=\frac{16}{27}..\)

Min = 16/27 khi x =y =z = 2/3

6 tháng 9 2016

\(\left(x+y+z\right)^2=x^2+y^2+z^2+xy+yz+zx=2\)

mà \(xy+yz+zx\le x^2+y^2+z^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{4}{3}\)

Tương tự:\(x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right)\cdot\frac{1}{3}\ge\frac{4^2}{3^2}\cdot\frac{1}{3}=\frac{16}{27}\)

Dấu ''='' xảy ra khi x=y=z=2/3

30 tháng 8 2015

câu 2  :

ab+  bc + ca = 2015 

=> 2015 +a^2 = a^2 + ab + bc + ca 

=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)

Tương tự : 2015+b^2 = ( b + c )(b +a )

 2015 + c^2 = ( c + a )(c + b ) thay vào ta có :

( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương 

30 tháng 8 2015

Câu 1 ) :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)

=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)

=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)

=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0 

=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0

=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)

=> 2015 - z =  0 hoặc 2015 -x = 0 hoặc 2015 - y = 0 

=> z = 2015 hoặc x= 2015 hoặc y = 2015 

Vậy trong ba số có ít nhất 1 số bằng 2015 

24 tháng 9 2018

\(2x^{2014}+1005\ge1007\sqrt[1007]{x^{4028}}=1007x^4\)

\(\Leftrightarrow x^{2014}\ge\frac{1007x^4-1005}{2}\)

\(\Rightarrow3\ge\frac{1007\left(x^4+y^4+z^4\right)-3.1005}{2}\)

\(\Rightarrow x^4+y^4+z^4\le3\)

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1