K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

NV
13 tháng 1 2019

ĐK: \(x,y,z\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=0\Leftrightarrow xy+xz+yz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-xz-yz\\xz--xy-yz\\yz=-xy-xz\end{matrix}\right.\)

Ta có:

\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-xz=x\left(x-y\right)-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-z\right)\Rightarrow\dfrac{1}{x^2+2yz}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{1}{y^2+2xz}=\dfrac{1}{\left(y-x\right)\left(y-z\right)}=\dfrac{-1}{\left(x-y\right)\left(y-z\right)}\)

\(\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)

Cộng vế với vế ta được:

\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2xz}+\dfrac{1}{z^2+2xy}=\dfrac{1}{\left(x-y\right)\left(x-z\right)}+\dfrac{-1}{\left(x-y\right)\left(y-z\right)}+\dfrac{1}{\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{y-z-\left(x-z\right)+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{y-z-x+z+x-y}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=0\) (đpcm)

13 tháng 3 2017

dài đấy

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ < =>xy+yz+xz=0\\ < =>\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-yz\end{matrix}\right.\)

\(\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

cmtt

\(=>\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

A = ...

= \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\)

=\(\dfrac{yz+xz+xy}{\left(x-y\right)\left(x-z\right)}\left(1\right)\)

mà xy + yz + xz = 0

=> (1) = 0

=> a = 0

10 tháng 1 2018

Pạn tham khảo cách làm nha!!!

Rút gọn phân thức

Chúc pạn hok tốt!!!

13 tháng 3 2017

@phynit em hiểu nguyên tắc đó. cái em càng không hiểu là các bạn bấm chọn. trong khi cái bước rất quan trọng thì đang bỏ lửng

Em suy nghĩ rất nhiều nhiều về cái đề này. không làm nổi-->theo dõi -->

13 tháng 3 2017

A sẽ giải thích tại sao đặt được nhân tử vậy cho nhé

Ta có:

\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)\)

\(=xy\left(x-y\right)+y^2z-z^2y+z^2x-zx^2\)

\(=xy\left(x-y\right)+\left(y^2z-zx^2\right)+\left(z^2x-z^2y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left(\left(xy-zx\right)+\left(z^2-zy\right)\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

Cậu ta làm sai thì làm sao ngonhuminh với thầy phynit hiểu được

13 tháng 12 2017

@Unruly Kid

13 tháng 12 2017

gif thees

19 tháng 12 2020

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

19 tháng 12 2020

Cảm ơn, cậu giỏi quá!!! Thông cảm cho đứa ngu toánbucminh

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)