Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x^2+y^2+z^2+x^2y^2z^2-4xyz+y^2z^2-2yz+1\ge0\)
\(\Leftrightarrow\left(y^2-2yz+z^2\right)+\left(x^2-2xyz+y^2z^2\right)+\left(x^2y^2z^2-2xyz+1\right)\ge0\)
\(\Leftrightarrow\left(y-z\right)^2+\left(x-yz\right)^2+\left(xyz-1\right)^2\ge0\) (đúng \(\forall x;y;z\))
\(\Rightarrow\) (đpcm)
\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)
Dấu "=" xảy ra khi \(x=y=z\)
\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)
đây là BĐT cơ bản luôn đúng suy ra đpcm
Lời giải:
Áp dụng BĐT AM-GM với các số dương $x,y,z$ ta có:
$(\sqrt{3}-1)^2x^2+y^2\geq 2(\sqrt{3}-1)xy$
$(\sqrt{3}-1)^2z^2+y^2\geq 2(\sqrt{3}-1)yz$
$2(\sqrt{3}-1)x^2+2(\sqrt{3}-1)z^2\geq 4(\sqrt{3}-1)xz$
Cộng theo vế và thu gọn:
2(x^2+y^2+z^2)\geq 2(\sqrt{3}-1)(xy+yz+2xz)$
$\Rightarrow P=\frac{x^2+y^2+z^2}{xy+yz+2xz}\geq \sqrt{3}-1$
Vậy $P_{\min}=\sqrt{3}-1$ khi $(\sqrt{3}-1)x=(\sqrt{3}-1)z=y$
bài này là >=nhé bạn
Áp dụng bđt AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)
\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
cộng theo vế và rút gọn
\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(\Leftrightarrow\dfrac{x^2y^2+y^2z^2+z^2x^2}{x+y+z}\ge xyz\)
\("="\Leftrightarrow x=y=z\)
Không biết thêm ĐK \(x^2+y^2+z^2=8\) vào làm gì =,=!
Áp dụng BĐT \(\left|a\right|+\left|b\right|+\left| c\right|\ge\left|a+b+c\right|\) (bạn tự chứng minh)
Ta có: \(\left|x\right|+\left|y\right|+\left|z\right|\ge\left|x+y+z\right|=0\)
Dấu = xảy ra khi x = y = z = 0
ko có bđt \(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\) nhé tth
Nếu có thì dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}ab\ge0\left(1\right)\\\left(a+b\right)c\ge0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a\le0\\b\le0\end{matrix}\right.\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b\ge0\\c\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a+b\le0\\c\le0\end{matrix}\right.\)
chỉ có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) thui nhé
hok tốt :>