K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Không biết thêm ĐK \(x^2+y^2+z^2=8\) vào làm gì =,=!

Áp dụng BĐT \(\left|a\right|+\left|b\right|+\left| c\right|\ge\left|a+b+c\right|\) (bạn tự chứng minh)

Ta có: \(\left|x\right|+\left|y\right|+\left|z\right|\ge\left|x+y+z\right|=0\)

Dấu = xảy ra khi x = y = z = 0

29 tháng 10 2018

ko có bđt \(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\) nhé tth

Nếu có thì dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}ab\ge0\left(1\right)\\\left(a+b\right)c\ge0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a\le0\\b\le0\end{matrix}\right.\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b\ge0\\c\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a+b\le0\\c\le0\end{matrix}\right.\)

chỉ có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)\(\left|a\right|-\left|b\right|\le\left|a-b\right|\) thui nhé

hok tốt :>

14 tháng 2 2018

ta có : \(x^2+y^2+z^2+x^2y^2z^2-4xyz+y^2z^2-2yz+1\ge0\)

\(\Leftrightarrow\left(y^2-2yz+z^2\right)+\left(x^2-2xyz+y^2z^2\right)+\left(x^2y^2z^2-2xyz+1\right)\ge0\)

\(\Leftrightarrow\left(y-z\right)^2+\left(x-yz\right)^2+\left(xyz-1\right)^2\ge0\) (đúng \(\forall x;y;z\))

\(\Rightarrow\) (đpcm)

NV
19 tháng 2 2020

\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)

Dấu "=" xảy ra khi \(x=y=z\)

29 tháng 1 2020

\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

đây là BĐT cơ bản luôn đúng suy ra đpcm

AH
Akai Haruma
Giáo viên
22 tháng 7 2020

Lời giải:

Áp dụng BĐT AM-GM với các số dương $x,y,z$ ta có:

$(\sqrt{3}-1)^2x^2+y^2\geq 2(\sqrt{3}-1)xy$

$(\sqrt{3}-1)^2z^2+y^2\geq 2(\sqrt{3}-1)yz$

$2(\sqrt{3}-1)x^2+2(\sqrt{3}-1)z^2\geq 4(\sqrt{3}-1)xz$

Cộng theo vế và thu gọn:

2(x^2+y^2+z^2)\geq 2(\sqrt{3}-1)(xy+yz+2xz)$

$\Rightarrow P=\frac{x^2+y^2+z^2}{xy+yz+2xz}\geq \sqrt{3}-1$

Vậy $P_{\min}=\sqrt{3}-1$ khi $(\sqrt{3}-1)x=(\sqrt{3}-1)z=y$

5 tháng 12 2018

bài này là >=nhé bạn

Áp dụng bđt AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)

\(x^2z^2+x^2y^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

cộng theo vế và rút gọn

\(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

\(\Leftrightarrow\dfrac{x^2y^2+y^2z^2+z^2x^2}{x+y+z}\ge xyz\)

\("="\Leftrightarrow x=y=z\)