Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H\ge\frac{\left(x+y\right)^2}{2xy\left(x+y^3\right)}+\frac{\left(y+z\right)^2}{2yz\left(y+z\right)}+\frac{\left(z+x\right)^2}{2zx\left(z+x\right)}=\frac{1}{2xy\left(x+y\right)}+\frac{1}{2yz\left(y+z\right)}+\frac{1}{2zx\left(z+x\right)}\)
\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)}\)
Ta chứng minh BĐT phụ sau:
\(x^3+y^3\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
Vậy BĐT phụ được chứng minh
Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right)\); \(z^3+x^3\ge zx\left(z+x\right)\)
\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{x^3+y^3+y^3+z^3+z^3+x^3}=\frac{9}{4\left(x^3+y^3+z^3\right)}=\frac{9}{32}\)
\(H_{min}=\frac{9}{32}\) khi \(x=y=z=\frac{2\sqrt{3}}{3}\)
Áp dụng bất đẳng thức AM-GM ta có:
\(x^5+\frac{1}{x}+1+1\ge4\sqrt[4]{x^5.\frac{1}{x}}=4x\)
Chứng minh tương tự: \(y^5+\frac{1}{y}+1+1\ge4\sqrt[4]{y^5.\frac{1}{y}}=4y\)
\(z^5+\frac{1}{z}+1+1\ge4\sqrt[4]{z^5.\frac{1}{z}}=4z\)
\(\Rightarrow T+6\ge4\left(x+y+z\right)=12\)
\(\Leftrightarrow T\ge6\)
Dấu " = " xảy ra <=> x=y=z=1
\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)
\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)
\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)
Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)
\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)
\(\Rightarrow Min_A=\frac{17}{3}\)
\(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}\)
\(=1+\frac{z^2}{x^2+y^2}+1+\frac{x^2}{y^2+z^2}+1+\frac{y^2}{z^2+x^2}\)
\(\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)\(=3+\frac{x^3+y^3+z^3}{2xyz}\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\)