Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
1)\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy....
b)\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-4.\dfrac{3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7\)
\(=\dfrac{-5}{2}.\dfrac{6}{5}-7\)
\(=-3-7\)
\(=-10\)
Câu 1:
1/ Tìm x:(mk nghĩ là z)
\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\Rightarrow\left(x+1\right)^2=\left(-3\right).\left(-12\right)=36\)
\(\Rightarrow x+1=6;x+1=-6\)
+) \(x+1=6\Rightarrow x=5\)
+) \(x+1=-6\Rightarrow x=-7\)
2/Tính:
\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}-\dfrac{4.3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}.\dfrac{6}{5}\right)-\left(3.\dfrac{6}{5}\right)-7\)
\(=0,6-3,6-7=-10\)
Từ đề bài:A=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=8\cdot\dfrac{3}{4}=6\)
\(A=\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
\(=\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}\\ =abc\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\ =8\cdot\dfrac{3}{4}\\ =6\)
Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)
Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)
cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)
\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)
Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)
chứng minh tương tự suy ra đpcm
1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)
\(B=\dfrac{1}{2018}\)
2)a)\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
3)\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)
Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)
\(g\left(x\right)=-x^{101}+f\left(x\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)
Tại x=0 thì f(x)-g(x)=0
Tại x=1 thì f(x)-g(x)=1
t k nhai hình,tốn time :v
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)
\(\Rightarrow ac+bc=2ab\)
\(\Rightarrow ac+bc-ab=ab\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
A B C E D 1 2 F 1 1 2 2 1 2
a. Xét \(\Delta BDA\) và \(\Delta BDE\) có:
\(BA=BE\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác góc B )
\(BD\) cạnh chung
Do đó \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)
\(\Rightarrow DA=DE\) ( cạnh tương ứng )
b. Vì \(\Delta BDA=\Delta BDE\left(cmt\right)\Rightarrow\widehat{A_1}=\widehat{E_1}\) ( góc tương ứng ) và \(\widehat{D_1}=\widehat{D_2}\) ( góc tương ứng )
Ta có:
\(\widehat{A_2}=180^0-\widehat{A_1}\) ( kề bù )
\(\widehat{E_2}=180^0-\widehat{E_1}\) ( kề bù )
Mà \(\widehat{A_1}=\widehat{E_1}\left(cmt\right)\Rightarrow\widehat{A_2}=\widehat{E_2}\)
Xét \(\Delta AFD\) và \(\Delta ECD\) có:
\(\widehat{A_2}=\widehat{E_2}\left(cmt\right)\)
\(DA=DE\left(cmt\right)\)
\(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh )
Do đó \(\Delta AFD=\Delta ECD\left(g.c.g\right)\)
\(\Rightarrow FD=CD\) ( cạnh tương ứng )
Ta có:
\(\widehat{FDB}=\widehat{D_1}+\widehat{FDA}\)
\(\widehat{CDB}=\widehat{D_2}+\widehat{CDE}\)
Mà \(\widehat{D_1}=\widehat{D_2}\) ( chứng minh câu a ) và \(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh ) \(\Rightarrow\widehat{FDB}=\widehat{CDB}\)
Xét \(\Delta BDF\) và \(\Delta BDC\) có:
\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác của góc B )
\(BD\) cạnh chung
\(\widehat{FDA}=\widehat{CDE}\left(cmt\right)\)
Do đó \(\Delta BDF=\Delta BDC\left(g.c.g\right)\)
Còn bài 2 thì Mashiro Shiina lm rồi
\(s=\frac{bc}{bc\left(1+a+ab\right)}+\frac{1}{1+b+bc}+\frac{b}{b\left(1+c+ac\right)}=>\) \(s=\frac{bc}{bc+abc+ab^2c}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}\)=>
\(s=\frac{bc}{1+b+bc}+\frac{1}{1+b+bc}+\frac{b}{1+b+bc}\)=>
\(s=\frac{1+b+bc}{1+b+bc}=1\)Vậy với a.b.c=1 S=1
CTHH có mà (=.=") https://hoc24.vn/hoi-dap/question/384421.html