Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
Áp dụng:
Số chính phương chia 3 dư 0 hoặc 1.
Số chính phương chia 4 dư 0 hoặc 1.
Đặt A = (x - y)(y - z)(z - x)
Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1
- Vì x, y, z chia 3 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 3
=> Hiệu của chúng chia hết cho 3
=> x - y hoặc y - z hoặc z - x chia hết cho 3
=> A chia hết cho 3 (1)
- Vì x, y, z chia 4 dư 0 hoặc 1
=> Có ít nhất 2 số có cùng số dư khi chia cho 4
=> Hiệu của chúng chia hết cho 4
=> x - y hoặc y - z hoặc z - x chia hết cho 4
=> A chia hết cho 4 (2)
Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12
Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này.
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS
1) A=4*\(\frac{10^{2n}-1}{9}\) B=\(2\cdot\frac{10^{n+1}-1}{9}\) C=\(8\cdot\frac{10^n-1}{9}\)
đặt 10^n=X => A+B+C+7=(4*x^2-4+2*10*x-2+8x-8+63)/9=(4x^2+28x+49)/9
=> A+B+C+7=\(\frac{\left(2x+7\right)^2}{3^2}\)
2) = 4mn((m^2-1)-(n^2-1))=4mn(m+1)(m-1)-4mn(n-1)(n+1)
mà m,n nguyên => m-1,m,m+1 và n-1,n,n+1 là 3 số nguyên liên tiếp nên chia hết cho 6
do đó 4mn(m^2-n^2) chia hết 6*4=24
Lời giải:
Đặt \(\left\{\begin{matrix} 2a+b=x^2\\ 2b+c=y^2\\ 2c+a=z^2\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=3(a+b+c)\vdots 3\)
Vì một trong 3 số chính phương kể trên chia hết cho 3 nên giả sử \(2c+a=z^2\vdots 3\)
\(\Rightarrow x^2+y^2\vdots 3\) (*)
Ta biết rằng một số chính phương khi chia 3 có dư 0 hoặc 1
Do đó Nếu \(x^2,y^2\) đều không chia hết cho 3 thì \(x^2+y^2\) chia 3 có thể có dư là 1,2 (trái với (*))
Từ đây suy ra \(x^2\vdots 3; y^2\vdots 3\).
Vậy \(x^2, y^2,z^2\vdots 3\) (1)
\(\Rightarrow x,y,z\vdots 3\) (do 3 là số nguyên tố)
\(\Rightarrow x^2, y^2,z^2\vdots 9\)
\(\Rightarrow 3(a+b+c)=x^2+y^2+z^2\vdots 9\Rightarrow a+b+c\vdots 3\) (2)
Từ (1);(2) suy ra:
\(\left\{\begin{matrix} x^2-(a+b+c)\vdots 3\\ y^2-(a+b+c)\vdots 3\\ z^2-(a+b+c)\vdots 3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a-c\vdots 3\\ b-a\vdots 3\\ c-b\vdots 3\end{matrix}\right.\)
\(\Rightarrow (a-c)(b-a)(c-b)\vdots 27\)
\(\Leftrightarrow (a-b)(b-c)(c-a)\vdots 27\)
Ta có đpcm.
+ Ta đã biết số chính phương khi chia cho 3 chỉ có 2 loại số dư là dư 0 và dư 1. Có 3 số A, B, C mà chỉ có 2 loại số dư nên theo nguyên lí Đi rích lê sẽ có 2 số cùng dư khi chia cho 3
=> trong 3 hiệu A - B; B - C; C - A có 1 hiệu chia hết cho 3
=> (A - B)(B - C)(C - A) chia hết cho 3 (1)
+ Ta đã biết số chính phương khi chia cho 4 chỉ có 2 loại số dư là dư 0 hoặc dư 1. Có 3 số A, B, C mà chỉ có 2 loại số dư nên theo nguyên lí Đi rích lê sẽ có 2 số cùng dư khi chia cho 4
=> trong 3 hiệu A - B; B - C; C - A có 1 hiệu chia hết cho 4
=> (A - B)(B - C)(C - A) chia hết cho 4 (2)
Từ (1) và (2); do (3;4)=1 => (A - B)(B - C)(C - A) chia hết cho 12 ( đpcm)