Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=\frac{a-b}{2009-2010}=\frac{b-c}{2010-2011}=\frac{c-a}{2011-2009}.\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{2^2}\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}.\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2.1\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)-\left(c-a\right)^2=0.\)
Hay \(M=0.\)
Vậy \(M=0.\)
Chúc bạn học tốt!
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,
Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)
\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)
\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)
đặt a/2008=b/2009=c/2010=k=>a=2008k;b=2009k;c=2010k
thay vào biểu thức:
\(\left(a-c\right)^3:\left[\left(a-b\right)^2.\left(b-c\right)\right]=\left(2008k-2010k\right)^3:\left[\left(2008k-2009k\right)^2.\left(2009k-2010k\right)\right]\)
\(=\left(-2k\right)^3:\left[\left(-1k\right)^2.\left(-1k\right)^2\right]=\left(-2\right)^3.k^3:\left[\left(-1\right)^2.k^2.\left(-1\right)^2.k^2\right]=8.k^3:1.k^4=8.k^3:k^4=8.k^3:k^3.k=8k\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)
<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8