K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

25 tháng 2 2017

Từ pt 1, rút x=3y+3 ra rồi thay vào pt dưới

giải pt bậc 2 là ra nghiệm, từ đó thay vào tính M

24 tháng 9 2021

????????

cho hệ phương trình

các anh các chị nói gì nhợ

thêm lãi ý hả

trời nhưng chưa kinh bằng em đâu

29 tháng 5 2019

1)Xét pt hoành độ của (P) và (d) ta có:

\(x^2=2x+2m\)

\(x^2-2x-2m=0\)

thay m=\(\frac{1}{3}\)

\(x^2-2x-2.\frac{1}{3}=0\)

\(x^2-2x-\frac{2}{3}=0\)

GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)

m=\(\frac{3-\sqrt{15}}{3}\)

b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)

B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)

áp dụng viet đc:

\(x_1+x_2=2\)

\(x_1.x_2=-2m\)

Ta có:(1+y1)(1+y2)=5

\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)

\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)

1+(x1+x2)^2-2x1x2+x1^2x2^2=5

1+(2)^2-2.(-2m)+(-2m)^2=5

1+4+4m+4m^2-5=0

4m^2+4m=0

m=-1 và m=0

29 tháng 5 2019

2)Δ'=(-2m)^2-2.(2m^2-9)

=4m^2-4m^2+2

=2>0 ∀m

=>pt có 2 nghiệm phân biệt ∀ m

b)áp dụng viet:

x1+x2=4m/4=2m

x1.x2=2m^2-1/2

ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)

\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)

mà ta có x1+x2=2m

=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)

\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)

2{(x1^2+x2^2)+x1x2}+2m^2-9<0

2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)

2{(x1+x2)^2-x1x2)+2m^2-9<0

còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đóhaha

15 tháng 4 2020

Giúp mk vs  

16 tháng 4 2020

<=> \(\hept{\begin{cases}x=3y+3\\x^2+y^2-2x-y-9=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3y+3\\\left(3y+3\right)^2+y^2-2\left(3y+3\right)-y-9=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3y+3\\10y^2+11y-6=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3y+3\\\orbr{\begin{cases}y=\frac{2}{5}\\y=-\frac{3}{2}\end{cases}}\end{cases}}\)

<=> \(\orbr{\begin{cases}y=\frac{2}{5};x=\frac{21}{5}\\y=-\frac{3}{2};x=-\frac{3}{2}\end{cases}}\)

28 tháng 8 2018

ta có : \(\Delta'=2^2+1=5>0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-1\end{matrix}\right.\)

ta có : \(A=\left(x_1-2x_2\right)+\left(x_2-2x_1\right)=-\left(x_1+x_2\right)=-4\)

vậy \(A=-4\)