K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

2^x=2^3(y+1)   ;3^2y=3^x-9

=> x=3y+3  va 2y=x-9

=>x=21 va y=6

24 tháng 9 2018

Nguyễn Thanh Thủy trả lời như lol

8 tháng 7 2018

ta có x+y=9, x.y=14=> x=9-y=14/y

nhân chéo ta có : 9y-y^2=14 <=> y^2+14-9y=0

<=> y^2-2y-7y+14=y(y-2)-7(y-2)=0

<=>(y-2)(y-7)=0

=> y=2 hoặc y=7

từ đó ta tính đc với y=2 thì x=7, với y=7 thì x=2

sau đó ta tính A, B, C dựa theo 2 trường hợp trên

1 tháng 8 2017

b)

\(\left(x+2\right)^4=y^3+x^4\)

\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)

\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)

+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)

\(\Rightarrow y^3>8x^3=\left(2x\right)^3\)              (1)

+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)

\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\)                 (2)

Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)

* Với \(y=2x+1\), thay vào biểu thức ta có :

\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)

\(\Leftrightarrow12x^2+26x+15=0\)

\(\Leftrightarrow2x\left(6x+13\right)=-15\)

Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm 

* Với \(y=2x+2\), ta có :

\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x+8=0\)

\(\Leftrightarrow x=-1\)

     Suy ra : \(y=2.\left(-1\right)+2=0\)

                     Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

1 tháng 8 2017

a)

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)

+ Với  \(xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Thay vào biểu thức  ta đc \(x=y=0\)

+ Với \(xy+1=0\Leftrightarrow xy=-1\)

Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Thay vao biểu thức ta thấy thỏa mãn !

                 Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

Bài 1:

\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6+1=0\)

\(\Leftrightarrow-3x^4+3x^2=0\)

\(\Leftrightarrow-3x^2\left(x-1\right)\left(x+1\right)=0\)

hay \(x\in\left\{0;1;-1\right\}\)

6 tháng 10 2020

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)

=> đpcm

b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)

\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)

\(B=\frac{2}{27}\)

=> đpcm

c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)

\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)

\(C=0\)

=> đpcm

12 tháng 8 2018

a)  ktra lại đề

b)  \(5x\left(x-y\right)-\left(y-x\right)=\left(x-y\right)\left(5x+1\right)\)

c)  \(x\left(x+3\right)+\left(3+x\right)=\left(x+3\right)\left(x+1\right)\)

f)  \(4x\left(x-2\right)-\left(2x\right)^2=4x^2-8x-4x^2=-8x\)

g)  \(\left(x-2\right)^2-\left(2-x\right)^3=\left(x-2\right)^2+\left(x-2\right)^3=\left(x-2\right)^2\left(x-1\right)\)

20 tháng 6 2018

Giải:

\(S=\left(x+2\right)^3-6x\left(x+2\right)+\left(2x-1\right)^3+6x\left(2x-1\right)-9\left(x^3-2\right)\)

\(\Leftrightarrow S=x^3+6x^2+12x+8-6x^2-12x+8x^3-12x^2+6x-1+12x^2-6x-9x^3-18\)

\(\Leftrightarrow S=8-1-18\)

\(\Leftrightarrow S=-11\)

Vậy ...

Câu 2 có sai đề không ạ, mình làm không ra

20 tháng 6 2018

Câu 2 đề sai nha bạn

14 tháng 8 2019

1)a)x+y=60

<=>(x+y)^2=3600

<=>x^2+2xy+y^2=3600(1)

mà xy=35 nên 2xy=2.35=70

(1)<=>x^2+70+y^2=3600

<=>x^2+y^2=3530

<=>(x^2+y^2)^2=12460900

<=>x^4+2x^2.y^2+y^4=12460900(2)

mà xy=35 nên 2x.x.y.y=2450

(2)<=>x^4+y^4=123458450

 b)x+y=1

<=>(x+y)^3=1

<=>x^3+3x^2y+3xy^2+y^3=1

<=>x^3+y^3+3xy(x+y)=1

<=>x^3+y^3+3xy=1

=>M=1

x+y=1

<=>x^2+2xy+y^2=1(1)

B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)

=x^3+y^3+3xy(x^2+2xy+y^2)

=M.1=1(từ(1)

c)

x-y=1

<=>(x-y)^3=1

<=>x^3-3x^2y+3xy^2-y^3=1

<=>x^3-y^3-3xy(x-y)=1

<=>x^3-y^3-3xy=1

=>N=1