K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

dựa vào định nghĩa giao tuyến : là tập hợp các điểm chung của 2 mặt phẳng ( 2 mặt phẳng cắt nhau ). 
giả sử M là giao điểm a, b , M ko thuộc delta ta có : 
M thuộc mặt phẳng (P) ( do M thuộc a ) 
M thuộc mặt phẳng (Q) ( do M thuộc b) 
suy ra M là điểm chung 2 mặt phẳng . 
theo định nghĩa trên, M phải thuộc giao tuyến. vậy điểu giả sử là sai . 
Kết luận : M thuộc giao tuyến.

Trong các mệnh đề sau đây, mệnh đề nào là đúng ? a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P) c) Gọi \(\Delta\) là đường vuông góc chung của...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b

b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P)

c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(a,\Delta\right)\) và \(\left(b;\Delta\right)\)

d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b

e) Đường vuông góc chung \(\Delta\) của hai đường chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia

1
31 tháng 3 2017

a) Sai, đúng là "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥a và Δ ⊥b"

b) Đúng

c) Đúng

d) Sai

e) Sai

21 tháng 10 2016

*Tìm giao tuyến của 2 mặt phẳng (M,a) và (M,b):
Có M là một điểm chung
Theo bài : a và b cắt nhau tại O
=> O thuộc a ⊂ (M,a) =>O thuộc (M,a)
và O thuộc b ⊂ (M,b) =>O thuộc (M,b)
=>O là điểm chung thứ hai
Vậy: (M,a) ∩ (M,b) = OM
Do đó giao tuyến OM lun thuộc mặt phẳng tạo bởi c và O ( mp (O,c)) là một mp cố định.