K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Do 2 hàm số cắt nhau tại điểm \(A\left(x';y'\right)\) nên ta có:

\(\left\{{}\begin{matrix}y'=\left(3m+2\right)x'+5\\y'=-x'-1\end{matrix}\right.\)

\(P=y'^2+x'-3=y'^2-y-4==\left(y'-\frac{1}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}x';y'\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x'=\frac{-3}{2}\\y'=\frac{1}{2}\end{matrix}\right.\)

Thay vào pt \(\left(1\right)\) ta được \(m=\frac{1}{3}\)

13 tháng 8 2020

Hai hàm số y=(3m+2)x+5 và y=-x-1 có đồ thị cắt nhau tại A(x';y') nên 3m+2 \(\ne\) -3 nên m khác -1 (t/m)

Hai hàm số y=(3m+2)x+5 và y=-x-1 (m khác -1) có đồ thị cắt nhau tại A(x';y')

nên y'= (3m+2)x+5 và y'=-x-1

=> (3m+2)x+5= -x-1

\(\Leftrightarrow\) (m+1)x' =-2 mà m khác -1

nên x'=\(\frac{-2}{m+1}\)

P= y'2 +2x' -3

P= (-x' -1 )2 +2x' -3

P= x'2+2x' +1+ 2x'-3

P= x'2 +4x' -2

P= (x'+2)2 - 6 \(\ge-6\)

Dấu "=" khi x'=2

\(\Leftrightarrow\) m=0 (t/m)

Kl: Khi m=0 thì biểu thức P đạt GTNN là -6

9 tháng 6 2015

không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ

9 tháng 6 2015

hoành độ giao điểm A là nghiệm của phương trình:

(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)

\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)

\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\)

=> Min =2 <=> m=0

1 tháng 8 2023

Bước 1: Tìm điểm chung của hai đồ thị y=(3m+2)⋅2+5(m≠−1) và y=−x−1:

Để điểm A(X,Y) là điểm chung của hai đồ thị, ta giải hệ phương trình:

(3m+2)⋅2+5=−X−1

=> m = -(x+10)/6

Bước 2: Tính giá trị p tại điểm A:

Ta đã biết Y=−X−1, thay vào hàm số p:

p=Y^2+2X−3

p=(−X−1)^2+2X−3

p=X^2+2X+1+2X−3

p=X^2+4X−2

Bước 3: Tìm giá trị nhỏ nhất của p:

Hàm số p=X^2+4X−2 là một hàm bậc hai, với hệ số a của X^2 là 1>0, vì vậy đồ thị của hàm số p là một đường parabol mở hướng lên. Để tìm giá trị nhỏ nhất của p, ta xác định điểm cực tiểu của đường parabol, đó là điểm mà đường cong cực tiểu nhất.

Đối với một hàm bậc hai y=ax^2+bx+c, điểm cực tiểu được xác định bởi:

Xmin​=-b/2a​

Ymin​=f(Xmin​)

Xmin​=−2

Ymin​=(−2)2+4⋅(−2)−2=0

Vậy giá trị nhỏ nhất của p là pmin​=0.

Bước 4: Tìm giá trị m tương ứng với pmin​=0:

Ta đã biết m=−(X+10)/6​, thay pmin​=0 vào đó:

0=−(Xmin​+10)/6​

=> 0=-4/3​

Điều này không thỏa mãn phương trình, vậy không có giá trị m nào khiến pmin​=0.

 

Câu 2: 

Thay x=0 và y=-3 vào (d), ta được:

m+2=-3

hay m=-5

10 tháng 5 2022

refer

10 tháng 5 2022

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)

8 tháng 2 2021

1) - Xét phương trình hoành độ giao điểm : \(x^2=x+m\)

\(\Leftrightarrow x^2-x-m=0\) ( I )

Có : \(\Delta=b^2-4ac=1-4\left(-m\right)=4m+1\)

- Để 2 hàm số cắt nhau tại hai điểm phân biệt

<=> PT ( I ) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow m>-\dfrac{1}{4}\)

2) Ta có : \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}=3\sqrt{2}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2+\left(x_1+m-x_2-m\right)^2=18\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1-x_2=3\\x_1-x_2=-3\end{matrix}\right.\)

Lại có : Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-m\end{matrix}\right.\)

TH1 : \(x_1-x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=-1\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

TH2 : \(x_1-x_2=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)

\(\Rightarrow-m=-2\)

\(\Rightarrow m=2\)

Vậy m = 2 thỏa mãn yêu cầu đề bài .

5 tháng 5 2021

theo tôi bạn có thể tách (x1-x2)=(x1+x2)2-4x1x2 cho nhanh

 

NV
8 tháng 1 2024

Phương trình hoành độ giao điểm: 

\(2x-3m=x-2m+1\)

\(\Rightarrow x=m+1\)

\(\Rightarrow y=x-2m+1=-m+2\)

\(\Rightarrow P=-2\left(m+1\right)^2+3\left(-m+2\right)+1\)

\(=-2m^2-7m+5=-2\left(m+\dfrac{7}{4}\right)^2+\dfrac{89}{8}\le\dfrac{89}{8}\)

Dấu "=" xảy  ra khi \(m=-\dfrac{7}{4}\)