K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

a: Phương trình hoành độ giao điểm là:

2x=-3x+5

=>5x=5

=>x=1

Thay x=1 vào y=2x, ta được:

\(y=2\cdot1=2\)

Vậy: M(1;2)

b: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-3x+5=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy: A(5/3;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-3\cdot0+5=5\end{matrix}\right.\)

Vậy: B(0;5)

O(0;0); A(5/3;0); B(0;5)

=>\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(5-0\right)^2}=5\)

Vì A,B là giao điểm của (d): y=-3x+5 với trục Ox và trục Oy nên ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{5}{3}\cdot5=\dfrac{25}{6}\)

M(1;2); O(0;0); A(5/3;0)

\(OA=\sqrt{\left(\dfrac{5}{3}-0\right)^2+\left(0-0\right)^2}=\dfrac{5}{3}\)

\(OM=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(MA=\sqrt{\left(\dfrac{5}{3}-1\right)^2+\left(0-2\right)^2}=\dfrac{2\sqrt{10}}{3}\)

Xét ΔOAM có \(cosAOM=\dfrac{OA^2+OM^2-AM^2}{2\cdot OA\cdot OM}=\dfrac{\sqrt{5}}{5}\)

=>\(sinAOM=\sqrt{1-\left(\dfrac{\sqrt{5}}{5}\right)^2}=\dfrac{2}{\sqrt{5}}\)

\(S_{AOM}=\dfrac{1}{2}\cdot OA\cdot OM\cdot sinAOM\)

\(=\dfrac{1}{2}\cdot\sqrt{5}\cdot\dfrac{5}{3}\cdot\dfrac{2}{\sqrt{5}}=\dfrac{5}{3}\)

10 tháng 3 2018

lo n me may

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

19 tháng 4 2020

2, Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

2: Vì y=2x+2//y=2x nên y=2x+2 và y=2x không có điểm chung

hay A không có tọa độ

4 tháng 9 2021

y=-2x đó, mình nhầm đề ạ

 

 

b) Phương trình hoành độ giao điểm của (D1) và (d2) là:

-x+4=x-4

\(\Leftrightarrow-2x=-8\)

hay x=4

Thay x=4 vào (d1), ta được:

y=-4+4=0

Thay x=0 vào (d1), ta được:

\(y=-0+4=4\)

Thay x=0 vào (d2), ta được:

\(y=0-4=-4\)

Vậy: A(0;4); B(0;-4); C(4;0)

11 tháng 3 2017

a, HS Tự làm

b, Tìm được C(–2; –3) là tọa độ giao điểm của  d 1  và  d 2

c, Kẻ OH ⊥ AB (CHOx)

S A B C = 1 2 C H . A B = 9 4 (đvdt)