K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 7 2021

Ta thấy A; B nằm cùng về 1 nửa mặt phẳng so với d

Theo BĐT tam giác: \(\left|XA-XB\right|\le AB\)

Đẳng thức xảy ra khi và chỉ khi X;A;B thẳng hàng hay X là giao điểm của AB và d

(Nếu ko cần tìm tọa độ điểm X mà chỉ cần tìm giá trị max thì tính độ dài AB là đủ)

\(\overrightarrow{AB}=\left(2;1\right)\Rightarrow\left|XA-XB\right|_{max}=AB=\sqrt{5}\)

21 tháng 7 2017

a) đặc C (x;y) , ta có : C \(\in\) (d) \(\Leftrightarrow x=-2y-1\)

vậy C (-2y -1 ; y ).

tam giác ABC cân tại C khi và chỉ khi

CA = CB \(\Leftrightarrow\) CA2 = CB2

\(\Leftrightarrow\) (3+ 2y + 1)2 + (- 1- y)2 = (- 1+ 2y + 1)2 + (- 2- y)2

\(\Leftrightarrow\) (4 + 2y)2 + (1 + y)2 = 4y2 + (2 + y)2

giải ra ta được y = \(\dfrac{-13}{14}\) ; x = \(-2\left(\dfrac{-13}{14}\right)-1=\dfrac{13}{7}-1=\dfrac{6}{7}\)

vậy C có tọa độ là \(\left(\dfrac{6}{7};\dfrac{-13}{14}\right)\)

b) xét điểm M (- 2t - 1 ; t) trên (d) , ta có :

\(\widehat{AMB}\) = 900 \(\Leftrightarrow\) AM2 + BM2 = AB2

\(\Leftrightarrow\) (4 + 2t)2 + (1 + t)2 + 4t2 + (2 + t)2 = 17

\(\Leftrightarrow\) 10t2 +22t + 4 = 0 \(\Leftrightarrow\) 5t2 + 11t + 2 = 0

\(\Leftrightarrow\left\{{}\begin{matrix}t=\dfrac{-1}{5}\\t=-2\end{matrix}\right.\)

vậy có 2 điểm thỏa mãn đề bài là M1\(\left(\dfrac{-3}{5};\dfrac{-1}{5}\right)\) và M2\(\left(3;-2\right)\)

NV
2 tháng 3 2023

a.

Phương trình hoành độ giao điểm:

\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)

\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)

\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)

\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)

b.

Pt hoành độ giao điểm:

\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)

\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)

Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)

\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)

\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)

\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)

\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)

\(=18-4\left(-m-2\right)+6m+2m^2\)

\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)

Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)

2 tháng 3 2023

Mình cảm ơn ạ

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

13 tháng 12 2020

giúp mik với ạ

13 tháng 12 2020

Mà GTLN hay GTNN vậy

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng