Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay F(1) với x =1 vào thôi
G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a
Ta có \(f\left(1\right)=g\left(2\right)\)
=> \(2+a+4=4-20-b\)
=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)
=> \(2+a+4-4+20+b=0\)
=> \(22+a+b=0\)
=> \(a+b=-22\)(1)
và \(f\left(-1\right)=g\left(5\right)\)
=> \(2-a+4=25-25-b\)
=> \(2-a+4=-b\)
=> \(2+4=a-b\)
=> \(a-b=6\)
=> \(a=6+b\)(2)
Thế (2) vào (1), ta có: \(6+b+b=-22\)
=> \(2b=-28\)
=> \(b=-14\)
và \(a=6+b=6-14=-8\)
ta có: F(1) = G(2)
\(\Rightarrow2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4=4-10-b\)
\(6+a=-6-b\)
\(\Rightarrow a+b=-6-6\)
\(a+b=-12\Rightarrow a=-12-b\)
ta có: F(-1) = G(5)
\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4=25-25-b\)
\(6-a=-b\)
\(\Rightarrow6-\left(-12-b\right)=-b\)
\(6+12+b=-b\)
\(b+b=-6-12\)
\(2b=-18\)
\(b=\left(-18\right):2\)
\(b=-9\)
\(\Rightarrow a+\left(-9\right)=-12\)
\(a=\left(-12\right)-\left(-9\right)\)
\(a=-3\)
KL: a= -3 ; b= -9
Chúc bn học tốt !!!!!
Lời giải:
\(\left\{\begin{matrix}
f(1)=g(2)\\
f(-1)=g(5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2.1^2+a.1+4=2^2-5.2-b\\
2(-1)^2-a+4=5^2-5.5-b\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-12\\ a-b=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=-9\end{matrix}\right.\)
Vậy...........
Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)
\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)
\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)
\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)
...
\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)
\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)
Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)
\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(3\) | \(7\) | \(21\) | \(-1\) | \(-3\) | \(-7\) | \(-21\) |
\(2y+1\) | \(21\) | \(7\) | \(3\) | \(1\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) |
\(x\) | \(0\) | \(2\) | \(6\) | \(20\) | \(-2\) | \(-4\) | \(-8\) | \(-22\) |
\(y\) | \(10\) | \(3\) | \(1\) | \(0\) | \(-11\) | \(-4\) | \(-2\) | \(-1\) |
Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)
Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)
\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)
\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
f(1)=g(2)
=>\(2\cdot1^2+a\cdot1+4=2^2-5\cdot2-b\)
=>\(a+6=-b-6\)
=>a+b=-12(1)
f(-1)=g(5)
=>\(2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5-b\)
=>\(2-a+4=-b\)
=>6-a=-b
=>a-b=6(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=6\\a+b=-12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{-12+6}{2}=-3\\b=-12-a=-12-\left(-3\right)=-9\end{matrix}\right.\)