Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk bít làm nhưng dài quá nên làm biếng hihi!
654756
mik làm biếng nhưng học òi nên thuộc kết quả. kết quả là
654756
a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)
\(=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)
\(=x^3-6x^2-2x-4\)
b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)
\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)
\(=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)
\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)
\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)
\(=3x^3+2x^2+2x+5\)
a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)
b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)
a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2
P(x) = x3 + x2 + x + 2
Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1
Q(x) = x3 + x2 - x + 1
b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
= (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)
= 2x3 + 3
P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1
= (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)
= 8x2 + 2x + 2x2 + 1
c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)2 - (-1)3 + 3.(-1) + 2
= -2 - (-2) + 1 - (-1) - 3 + 2
= 1
Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2
= 16 - 4 + 4 - 8 + 6 + 2
= 16
Đáp án:
Giải thích các bước giải:
a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2
= -2x³ + x² + x - 2
Q(x) = x³ - 2x² + 3x + 1 + 2x²
= x³ + 3x + 1
Sắp xếp theo thứ tự giảm dần của biến là:
P(x) = -2x³ + x² + x - 2
Q(x) = x³ + 3x + 1
b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1
= -x³ + x² + 4x - 1
P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1
= -4x³ + x² - 2x - 3
\(A=x^7-2x^4+3x^3-3x^4+2x^7-x+7-2x^3\)
\(A=3x^7-5x^4+x^3-x+7\)
\(B=3x^2-4x^4-3x^2-5x^5-0,5x-2x^2-3\)
\(B=-5x^5-4x^4-2x^2-0,5x-3\)
\(A+B=3x^7-5x^4+x^3-x+7-5x^5-4x^4-2x^2-0,5x-3\)
\(A+B=3x^7-9x^4+x^3-1,5x+4\)
\(A-B=3x^7-5x^4+x^3-x+7+5x^5+4x^4+2x^2+0,5x+3\)
\(A-B=3x^7-x^4+x^3-0,5x+10+5x^5\)
a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2
=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2
=> P(x) = x3 + x - x2 + 2
Sắp xếp : P(x) = x3 - x2 + x + 2
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1
=> Q(x) = -x3 + x2 + x + 1
Sắp xếp : Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)
=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1
=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)
=> H(x) = 2x + 3
K(x) = P(x) - Q(x)
=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)
=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1
=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)
=> K(x) = 2x3 - 2x2 + 1
c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))
P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1
d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)
Vậy x = -3/2 là nghiệm của đa thức H(x)
P/s : K chắc :))
a) Mình làm tắt
P(x) = x3 - x2 + x + 2
Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
= x3 - x2 + x + 2 - x3 + x2 + x + 1
= 2x + 3
K(x) = P(x) - Q(x)
= x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )
= x3 - x2 + x + 2 + x3 - x2 - x - 1
= 2x3 - 2x2 + 1
c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1
P(-1) = 13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3
d) H(x) = 2x + 3
H(x) = 0 <=> 2x + 3 = 0
<=> 2x = -3
<=> = -3/2
Vậy nghiệm của H(x) = -3/2
a) b) thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến:
\(P\left(x\right)=x^4+\frac{1}{3}x^3+2x^2-\frac{3}{2}x-1\)
\(Q\left(x\right)=2x^3+2x^2-\frac{1}{5}x-\frac{1}{7}\)
c) \(P\left(x\right)-Q\left(x\right)=x^4-\frac{5}{3}x^3-\frac{13}{10}x-\frac{6}{7}\)
\(P\left(x\right)+Q\left(x\right)=x^4+\frac{7}{3}x^3+4x^2-\frac{17}{10}x-\frac{8}{7}\)