K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

F(x) = 2x5 + 3x3 - 4x4 + 5x - x2 + x3 + x1

F(x) = 2x5 -4x4 + ( 3x3 + x3 ) -x2 + ( 5x+x)

F(x) = 2x5 - 4x4 + 4x3 - x2 + 6x

G(x) = -x2 - x5 + 2x4 - 3x3 + x4 +7

G(x) = -x5 + ( 2x4 + x4) -x2 +7

G ( x) = -x5 + 3x4 -x2 +7

26 tháng 4 2018

a,F(x)= 2x\(^5\) + 3x\(^3\) - 4x\(^4\) + 5x - x\(^2\) + x\(^3\) + x\(^1\)

=2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\)

G(x)= -x\(^2\) - x\(^5\) + 2x\(^4\) - 3x\(^3\) + x\(^4\) + 7

=\(-x^5\)\(+3x^4\)\(-3x^3\)\(-x^2\)+7

b,F(x)-G(x)=(2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\))-\((-x^5+3x^4-3x^3-x^2+7)\)

=\(2x^5-4x^4+4x^3-x^2+6x\) \(+x^5-3x^4\)\(+3x^3\)\(+x^2-7\)

=\(\left(2x^5+x^5\right)\)+\(\left(-4x^4-3x^4\right)\)+\(\left(4x^3+3x^3\right)\)\(\left(-x^2+x^2\right)\)+6x-7

=\(3x^5-7x^4\)\(+7x^3+6x-7\)

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

\(\cdot\) `\text {dnammv}`

`7,`

`a,`

`M(x)=\(-5x^4+3x^5+x\left(x^2+5\right)+14x^4-6x^5-x^3+x-1\)

`M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1`

`=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`=-3x^5+9x^4+6x-1`

`N(x)=x^4(x - 5) - 3x^3 + 3x + 2x^5 - 4x^4 + 3x^3 - 5`

`= x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5`

`= 3x^5-9x^4+3x-5`

`b,`

`H(x)= N(x)+ M(x)`

`-> H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`= (-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`= 9x-6`

`G(x)=M(x)-N(x)`

`-> G(x)= (-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)`

`= -3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`= (-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`= -6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất: `9`

Hệ số tự do: `-6`

`G(x)= -6x^5+18x^4+3x+4`

Hệ số cao nhất: `-6`

Hệ số tự do: `4`

`d,`

`H(1)=9*1-6=9-6=3`

`H(-1)=9*(-1)-6=-9-6=-15`

 

`G(1)=-6*1^5+18*1^4+3*1+4=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=0+0+0+4=4`

 

`H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x= 6 \div 9`

`-> x=`\(\dfrac{2}{3}\)

Vậy, nghiệm của đa thức là `x=`\(\dfrac{2}{3}\)

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)

10 tháng 4 2020

dsssws

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)

\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)

\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)

\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)

\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)

\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)

\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)

\(= 3 x + 4\)

c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)

\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)

\(⇒ 3 x = − 4\) 

\(⇒ x = − \frac{4 }{3} \)

Vậy  \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)

 

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)

\(=x^5+x^3-4x^2-2x+5\)

\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)

\(=x^5-x^4+2x^2-3x+1\)

b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)

\(=2x^5-x^4+x^3-2x^2-5x+6\)

21 tháng 6 2020

a. 

\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)

\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)

\(=x^4+5x^3-x^2+x+3\)

\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)

\(=-x^4-5x^3+3x^2-x-2\)

b. 

\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)

\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)

\(=2x^2+1\)

c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)

\(\Rightarrow2x^2+1=0\)

     \(2x^2\)      \(=-1\)

         \(x^2\)      \(=\frac{-1}{2}\)  

mà \(x^2\ge0\)

\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm

học tốt

Nhớ kết bạn với mình đó