K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Vì f (x) = 2x2 + ax + 4 nên

f (1) = 2 . 12 + a . 1 + 4 = 2 + a + 4 = 6 + a

f (-1) = 2 . ( - 1 )2 + a . ( -  1 ) + 4 = 2 - a + 4 = 6 - a

Vì g (x) = x2 - 5x - b nên

g (2) = 4 - 10 - b = - 6 - b

g (5) = 25 - 25 - b = - b

Mà f (1) = g (2) và f(-1)=g(5)

=> \(\hept{\begin{cases}6+a=-6-b\\6-a=-b\end{cases}}\)=>\(\hept{\begin{cases}6+a+6+b=0\\6-a+b=0\end{cases}}\)=> \(\hept{\begin{cases}a+b=-12\\a-b=6\end{cases}}\)

=> \(\hept{\begin{cases}a=-3\\b=-9\end{cases}}\)

Vậy ...

8 tháng 5 2019

\(f\left(x\right)=2x^2+ax+4\)

\(\Rightarrow f\left(1\right)=2.1^2+a.1+4\)

\(\Rightarrow f\left(1\right)=2+a+4\)

\(\Rightarrow f\left(1\right)=a+6\)

và \(g\left(x\right)=x^2-5x-b\)

\(\Rightarrow g\left(2\right)=2^2-5.2-b\)

\(\Rightarrow g\left(2\right)=4-10-b\)

\(\Rightarrow g\left(2\right)=-6-b\)

Để \(f\left(1\right)=g\left(2\right)\) thì \(a+6=-6-b\)\(\Leftrightarrow a+b=-12\)(1)

*\(f\left(-1\right)=2.\left(-1\right)^2+a.\left(-1\right)+4\)

\(\Rightarrow f\left(-1\right)=2-a+4\)

\(\Rightarrow f\left(-1\right)=6-a\)

và \(g\left(5\right)=5^2-5.5-b\)

\(\Rightarrow g\left(5\right)=25-25-b\)

\(\Rightarrow g\left(5\right)=-b\)

Để \(f\left(-1\right)=g\left(5\right)\)thì \(6-a=-b\)\(\Leftrightarrow-a+b=-6\)(2)

Từ (1) và (2), có a + b = -12    (1)

và                       -a + b = -6     (2)

Cộng (1) và (2) vế theo vế, có: \(2b=-18\)

                                                    \(\Rightarrow b=-9\)

                                                    \(\Rightarrow a=-12-\left(-9\right)=-3\)

8 tháng 5 2019

Ta có : f(1) = 2,12 +a.1 +4 = 6a

g(2) = 22 - 5.2 -b = -b-6

Có : f(1) = g(2) => 6+a=-b-6

                                  a = -b - 6 - 6 = -b-12                   (1)

f(1) = 2.(-1)2 +a . (-1)+4

=2.1 - a + 4 = 2-a+4 = 6-a

g(5) = 52 - 5.5 -b = 25-25 - b = -b

f(1) = g(5) => 6-a = -b 

                          a = 6+b                                                (2)

Từ (1) và (2) => 6+b = b-12

                           b+b = 12-6

                            2b   = -18

                              b   = \(\frac{-18}{2}\)

                              b   = -9

Thay b=-9 vào (2)  => a=6-9 = -3

Vậy a=-3 , b=-9

Đúng đó bn !

1 tháng 5 2016

Ta có f(1) = 2 + a + 4; g(2) = 4 - 10 - b 

f(1) = g(2) khi 2 + a + 4 = 4 - 10 - b hay 6 +a = - 6 - b => a + b = -12. 

Tương tự: f(-1) = 6 - a; g(5) = -b => f(-1) = g(5) khi 6 - a = -b => -a + b = -6 

Giải hệ 2 pt: a + b = -12 và -a + b = -6. Tìm được a = -3; b = -9

1 tháng 5 2016

f﴾1﴿ = g﴾2﴿

thay vào ta có:

f﴾1﴿ = 2*1 2 + a + 4 = g﴾2﴿ = 2 2 ‐ 5*2 ‐ b           ﴾* là nhân nhé﴿

=> 2 + a + 4 = 4 ‐ 10 ‐ b

=> a + b = 4 ‐ 10 ‐ 2 ‐ 4

=> a + b = ‐12    ﴾1﴿

f﴾‐1﴿ = g﴾5﴿

thay vào ta có:

f﴾‐1﴿ = 2*﴾‐1﴿ 2 + ‐a + 4 = g﴾5﴿ = 5 2 ‐ 5*5 ‐ b

=> 2 ‐ a + 4 = 25 ‐ 25 ‐ b

=> ‐a + b = 25 ‐ 25 ‐2 ‐ 4

=> ‐a + b = ‐6 ﴾2﴿

lấy ﴾1﴿ + ﴾2﴿, ta có:

a + b = ‐12

‐a + b = ‐6

2b = ‐18

=> b = ‐18 : 2 = ‐9

mà a + b = ‐12

 => a + ﴾‐9﴿ = ‐12

=> a = ‐3

vậy b = ‐9 a = ‐3

5 tháng 5 2018

Ta có \(f\left(x\right)=2x^2+ax+4\)

\(\Rightarrow f\left(1\right)=2+a+4=6+a\) ; (1)

\(f\left(-1\right)=2-a+4=6-a\) (3)

Và \(g\left(x\right)=x^2-5x-b\)

\(\Rightarrow g\left(2\right)=4-10-b=-6-b\) ; (2)

\(g\left(5\right)=25-25-b=-b\) (4)

Từ (1) và (2) suy ra :

\(6+a=-6-b\Leftrightarrow b+a=-12\) (*)

Từ (3) và (4) suy ra :

\(6-a=-b\Leftrightarrow a-b=6\) (**)

Từ (*) và (**) suy ra :

\(\left\{{}\begin{matrix}a+b=-12\\a-b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-9\end{matrix}\right.\)

Vậy \(a=-3;b=-9\)

1 tháng 5 2018

Thay F(1) với x =1 vào thôi 

G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a 

1 tháng 5 2018

Ta có \(f\left(1\right)=g\left(2\right)\)

=> \(2+a+4=4-20-b\)

=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)

=> \(2+a+4-4+20+b=0\)

=> \(22+a+b=0\)

=> \(a+b=-22\)(1)

và \(f\left(-1\right)=g\left(5\right)\)

=> \(2-a+4=25-25-b\)

=> \(2-a+4=-b\)

=> \(2+4=a-b\)

=> \(a-b=6\)

=> \(a=6+b\)(2)

Thế (2) vào (1), ta có: \(6+b+b=-22\)

=> \(2b=-28\)

=> \(b=-14\)

và \(a=6+b=6-14=-8\)

* Mình xin sửa lại đề :

Cho hai đa thức \(f\left(x\right)=2x^2+ax+4\)\(g\left(x\right)=x^2-5x-b\)( \(a,b\) là hằng số )

Tìm các hệ số a,b sao cho \(f\left(1\right)=g\left(2\right)\)\(f(-1)=g(5)\)

Bài làm :

\(f\left(x\right)=2x^2+ax+4\)

\(\Rightarrow f\left(1\right)=2\left(1\right)^2+a\left(1\right)+4=2+a+4=6+a\)

\(\Rightarrow f\left(-1\right)=2\left(-1\right)^2+a\left(-1\right)+4=2+\left(-a\right)+4=6-a\)

\(g\left(x\right)=x^2-5x-b\)

\(\Rightarrow g\left(2\right)=\left(2\right)^2-5\left(2\right)-b=4-10-b=-6-b\)

\(\Rightarrow g\left(5\right)=\left(5\right)^2-5\left(5\right)-b=25-25-b=-b\)

\(f\left(1\right)=g\left(2\right)\Rightarrow6+a=-6-b\)

\(f(-1)=g(5)=> 6-a=-b\)

\(\Rightarrow\left\{{}\begin{matrix}6+a=-6-b\\6-a=-b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-12\\-a+b=-6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=-12-a\\-6=-12-a-a\end{matrix}\right.\)

\(\Rightarrow-a-12-a=-6\)

\(\Rightarrow-2a=6\)

\(\Rightarrow a=-3\)

\(\Rightarrow b=6-\left(-3\right)=9\)

Vậy : ......

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

4 tháng 5 2017

Ta có \(f\left(1\right)=2.1^2+a.1+4=2+a+4=6+a\)

\(g\left(2\right)=2^2-5.2-b=4-10-b=-6-b\)

Để \(f\left(1\right)=g\left(2\right)\) thì \(6+a=-6-b\) => -12=b+a (1)

Lại có \(f\left(-1\right)=2.\left(-1\right)^2+a.\left(-1\right)+4=2-a+4=6-a\)

\(g\left(5\right)=5^2-5.5-b=25-25-b=-b\)

Để \(f\left(-1\right)=g\left(5\right)\) thì 6-a=-b => a-b=6 (2)

Từ 1 và 2 => a = (-12+6):2 =-3

b=(-12) -3 =-9

Vậy để \(f\left(1\right)=g\left(2\right)\)\(f\left(-1\right)=g\left(5\right)\) thì a=-3 ; b= -9

7 tháng 5 2017

Song Joong Ki cám ơn bạn nhìu nha !yeu