Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}=\dfrac{\sqrt{x}}{\sqrt{x}-5}\)
b: \(P=A:B=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{\sqrt{x}}{\sqrt{x}-5}=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(P-1=\dfrac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\dfrac{-8}{\sqrt{x}+3}< 0\)
=>P<1
b: \(A=\dfrac{P}{Q}=\dfrac{x+3}{\sqrt{x}-2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{3}\)
Dấu '=' xảy ra khi \(x=3\)
Câu 4:
Để C chia hết cho D thì \(x^4+a⋮x^2+4\)
\(\Leftrightarrow x^4-16+a+16⋮x^2+4\)
=>a+16=0
hay a=-16
Lời giải:
a) \(x=\frac{23(5-\sqrt{2})}{5+\sqrt{2}}=\frac{23(5-\sqrt{2})^2}{(5+\sqrt{2})(5-\sqrt{2})}=\frac{23(5-\sqrt{2})^2}{5^2-2}=(5-\sqrt{2})^2\)
\(\Rightarrow x=5-\sqrt{2}\)
Do đó: \(B=\frac{5-\sqrt{2}+2}{5-\sqrt{2}-5}=\frac{7-\sqrt{2}}{-\sqrt{2}}=\frac{\sqrt{2}-7}{\sqrt{2}}\)
b)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}=\frac{x+3\sqrt{x}}{(\sqrt{x}-5)(\sqrt{x}+5)}+\frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{x+4\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{(\sqrt{x}-1)(\sqrt{x}+5)}{(\sqrt{x}-5)(\sqrt{x}+5)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
Ta có: \(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{4}{7}\)
\(\Rightarrow 7(\sqrt{x}-1)=4(\sqrt{x}+2)\)
\(\Rightarrow \sqrt{x}=5\Rightarrow x=25\)
c)
\(\frac{A}{B}=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Vì \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+2\geq 2\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}\)
\(\Rightarrow \frac{A}{B}=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}\)
Vậy \(P_{\min}=\frac{-1}{2}\Leftrightarrow x=0\)
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
\(a.A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)=\dfrac{-5}{\sqrt{x}+5}:\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}=\dfrac{-5}{\sqrt{x}+5}.\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\) ( x ≥0 ; x # 9 ; x # 25 )
\(b.A< 1\) ⇔ \(\dfrac{5}{\sqrt{x}+3}< 1\)
⇔ \(\dfrac{2-\sqrt{x}}{\sqrt{x}+3}< 0\)
⇔ \(2-\sqrt{x}< 0\)
⇔ \(x>4\) ( x # 9 ; x # 25 )
KL.................
\(A=\dfrac{x}{x-5}-\dfrac{10x}{x^2-25}-\dfrac{5}{x+5}\left(ĐKXĐ:x\ne\pm5\right)\)
\(=\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{10x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)