K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

bài toán cực trị có ẩn trong đoạn là pahir cẩn thận này @
\(0\le a,b,c\le1\)\(\Rightarrow a\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a-ab-a^2+a^2b\ge0\)
\(\Leftrightarrow a^2b\ge ab+a^2-a\)
Tương tự \(b^2c\ge bc+b^2-b;c^2a\ge ca+c^2-c\)
\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+bc+ca+ab-a-b-c+a^2+b^2+c^2\)
\(\ge\left(1-a\right)\left(1-b\right)\left(1-c\right)+abc+a^2+b^2+c^2\ge a^2+b^2+c^2\)
dấu = xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\hept{ }\left(0,1,1\right),\left(0,0,1\right),\left(1,0,1\right)\left(1,1,0\right)\left(0,1,0\right),\left(1,0,0\right)\left\{\right\}\)

4 tháng 8 2016

Do : \(\hept{\begin{cases}a\le1\Rightarrow1-a\ge0\\b\le1\Rightarrow1-b\le0\\c\le1\Rightarrow1-c\le0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0}\)

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

22 tháng 10 2016

Đề sai rồi b

5 tháng 10 2020

Ta có : \(a^2+2b+3=a^2+1+2b+2\ge2a+2b+2=2\left(a+c+1\right)\)

\(b^2+2c+3=b^2+1+2c+2\ge2b+2c+2=2\left(b+c+1\right)\)

\(c^2+2a+3=c^2+1+2a+2\ge2c+2a+2=2\left(c+a+1\right)\)

Suy ra \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{a}{2\left(a+b+1\right)}+\frac{b}{2\left(b+c+1\right)}+\frac{c}{2\left(c+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\right)\)

Tương đương \(\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}\left(\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\right)\)

Đặt \(M=\frac{b+1}{a+b+1}+\frac{c+1}{b+c+1}+\frac{a+1}{c+a+1}\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta được : \(M=\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\frac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}+\frac{\left(a+1\right)^2}{\left(a+1\right)\left(c+a+1\right)}\)

\(\ge\frac{\left(a+b+c+3\right)^2}{\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)}\)

Do \(\left(a+1\right)\left(a+b+1\right)+\left(c+1\right)\left(b+c+1\right)+\left(a+1\right)\left(c+a+1\right)=a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3\)\(=\frac{1}{2}\left(a^2+b^2+c^2\right)+ab+bc+ca+3\left(a+b+c\right)+\frac{9}{2}=\frac{1}{2}\left(a+b+c+3\right)^2\)

Từ đó \(M\ge\frac{\left(a+b+c+3\right)^2}{\frac{1}{2}\left(a+b+c+3\right)^2}=2\Rightarrow\frac{3}{2}-\frac{a}{a^2+2b+3}-\frac{b}{b^2+2c+3}-\frac{c}{c^2+2a+3}\ge\frac{1}{2}.2=1\)

\(< =>\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\left(đpcm\right)\)

Bài toán hoàn tất . Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

19 tháng 7 2016

bài nè cấp 2 chưa làm đc đâu bạn ạ