Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
Vậy x+y=0, y+z=0 hoặc z+x=0
TH1: Nếu x+y=0 => \(x=-y\Rightarrow x^{25}+y^{25}=0\Rightarrow P=0\)
TH2: Nếu y+z=0 => \(y=-z\Rightarrow y^3+z^3=0\Rightarrow P=0\)
TH3: Nếu z+x=0 => \(z=-z\Leftrightarrow z^{2006}-x^{2006}=0\Rightarrow P=0\)
Vậy P=0
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
1/x + 1/y + 1/z = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+xz).(x+y+z)=xyz
<=> x^2y+xy^2+y^2z+z^2y+z^2x+x^2z+3xyz=xyz
<=> x^2y+y^2x+y^2z+z^2y+z^2x+x^2z+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc x+z=0
<=> x=-y hoặc y=-z hoặc z=-x
Nếu x=-y => x^25 = -y^25 => P = 0
Nếu y=-z => y^3 = -z^3 => P = 0
Nếu z=-x => z^2006 = x^2006 => P = 0
Vậy P = 0
Tk mk nha
\(9x^2y^2+y^2-6xy-2y+2\)
\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)
\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}3xy-1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=\frac{1}{3}\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=1\end{matrix}\right.\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\left(\frac{1}{x+y+z}\right)=1\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=1\)
\(\Leftrightarrow3xyz+yz\left(y+z\right)+xz\left(x+z\right)+xy\left(x+y\right)=xyz\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) hay B = 0
Bài 1:
\(x^2+y^2+z^2=xy+3y+2z-4\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)
Khi đó \(x+y+z=1+1+2=4\)
Bài 2:
\(x^2-2y^2=5\)
Từ pt đầu ta có \(x\) phải là số lẻ. Thay \(x=2k+1\left(k\in Z\right)\) vào pt đầu ta được:
\(\left(2k+1\right)^2-2y^2=5\)
\(\Rightarrow4k^2+4k+1-2y^2=5\)
\(\Rightarrow4k^2+4k-4=2y^2\)
\(\Rightarrow4\left(k^2+k-1\right)=2y^2\)
\(\Rightarrow2\left(k^2+k-1\right)=y^2\). Đặt \(y=2t\left(t\in Z\right)\), ta có:
\(2\left(k^2+k-1\right)=4t^2\)
\(\Leftrightarrow k\left(k+1\right)=2t^2+1\)
Dễ thấy: \(VT\) là số chẵn \(\forall x\in Z\) còn \(VP\) là số lẻ \(\forall t\in Z\)
Suy ra pt vô nghiệm. Số nghiệm nguyên dương là \(0\)
Bài 3:
\(x^2+y^2+2x+1=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+y^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
1 . Ta có :
\(x^2+y^2+z^2=xy+3y+2z-4\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+4\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)
Vậy x+y+z = 1 + 2 + 1 = 4
\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2xy+2xz+2yz+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2-3x^2-3y^2-3z^2\)
=0 không phụ thuộc vào biến
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)