K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)

Áp dụng BĐT Bunhiacopxki ta có:

\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)

\(\Leftrightarrow A\ge3\)

Dấu " = " xảy ra <=> \(x=y=z=1\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

20 tháng 4 2019

Từ chỗ x + y + z >= 3 còn có cách khác rất quen thuộc ạ!

Ta có: \(A=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\)

\(\ge2\left(x+y+z\right)-3\ge6-3=3\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

20 tháng 12 2016

Ta có

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Đặt \(\hept{\begin{cases}xy=a\\yz=b\\zx=c\end{cases}\Rightarrow a+b+c=0}\)

Ta có: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)

Ta lại có:

\(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}\)

\(=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)

10 tháng 1 2015

1/x + 1/y + 1/z = 0 suy ra xy + yz + zx = 0

N = \(\frac{\left(yz\right)^3+\left(zx\right)^3+\left(xy\right)^3}{x^2y^2z^2}\)

Ta cm bài toán sau : nếu  a + b +c = 0 thì a 3 + b3 + c3 = 3abc

thật vậy a3 + b3 + c3 = ( a + b + c)3 - 3(a + b)(b + c)(c + a) = - 3(-c)(-a)(-b) = 3abc

Do đó N = \(\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

2 tháng 5 2016

Toán nâng cao phải ko bạn

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

14 tháng 2 2018

Ta có:      \(x+y+z=0\)

\(\Leftrightarrow\)  \(\left(x+y+z\right)^2=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow\)\(x^2+y^2+z^2=0\)   (vì  xy + yz + xz =0)

\(\Leftrightarrow\)\(x=y=z=0\)

Vậy      \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)

16 tháng 9 2019

2) \(x=y+1\Rightarrow x-y=1\)

\(\Rightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)

\(\Leftrightarrow x^8-y^8=x^8-y^8\)(đúng)

Vậy \(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=x^8-y^8\)(đpcm)