K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\hept{\begin{cases}1+\frac{x}{y}+\frac{x}{z}=0\\\frac{y}{x}+1+\frac{y}{z}=0\\\frac{z}{x}+\frac{z}{y}+1=0\end{cases}}\)

\(\Rightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=-3\)

mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)

\(\Rightarrow yz+xz+xy=0\)

\(\Rightarrow\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(yz+xz+xy\right)=0\)

\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)

\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)

\(\Rightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)

Học tốt

25 tháng 7 2020

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

<=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}.\left(-\frac{1}{z}\right)\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó: P = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

24 tháng 3 2016

\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)

\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)

11 tháng 2 2018

Với x,y,z khác 0 ta có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{yz+xz+xy}{xyz}=0=>yz+xz+xy=0\)

Ta luôn có nếu a+b+c=0 thì a3+b3+c3=3abc

Vì xy+yz+zx=0 nên x3y3+y3z3+z3x3=3x2y2z2

Với x3y3+y3z3+z3x3=3x2y2zta có:

\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)

Vậy ....

20 tháng 11 2017

Bạn ghi lại đề đi

20 tháng 11 2017

thế Ty+1/z=0 là sao