K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

​Bài 1:

I. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh:

1) Vẽ tam giác biết độ dài 3 cạnh:  (HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AB = 3cm, BC = 5cm, AC = 4cm.

2)  Trường hợp bằng nhau cạnh – cạnh – cạnh:

“Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.”

II. Trường hợp bằng nhau thứ nhất của tam giác cạnh – góc – cạnh:

1) Vẽ tam giác biết độ dài 2 cạnh và 1 góc xen giữa:

(HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AB = BC = 4cm,  

2)  Trường hợp bằng nhau cạnh – góc – cạnh:

“Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.”

* Lưu ý:  Cặp góc bằng nhau phải xen giữa hai cặp cạnh bằng nhau thì mới kết luận được hai tam giác bằng nhau.

III. Trường hợp bằng nhau thứ nhất của tam giác góc – cạnh – góc:

1) Vẽ tam giác biết độ dài 1 cạnh và 2 góc kề:

(HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AC = 5cm, 

2)  Trường hợp bằng nhau góc – cạnh – góc:

“Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.”

19 tháng 7 2018

 * Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

* Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề ấy cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (g-c-g)

                

* Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (ch-gn)

                    

21 tháng 9 2017

Bà vẽ hình kiểu gì vậy

21 tháng 9 2017

Hình 63

Ta có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và AB = MI; AC = IN; BC = MN

Nên ΔABC = ΔIMN

 Hình 64 :

ΔPQR có:

Giải bài 10 trang 111 Toán 7 Tập 1 | Giải bài tập Toán 7

Và QH = RP, HR = PQ, QR ( cạnh chung ) 

Nên ΔHQR = ΔPRQ 

26 tháng 11 2016

Mình chịu bạn ạ

k mình nha

Chúc bạn học giỏi

Mình cảm ơn bạn nhiều

26 tháng 11 2016

Cái này bạn phải đến lớp 8 để sử dụng đường trung bình mới giải đc :) 
-Giải =cách đừng trung bình dễ lắm bạn ạ

9 tháng 12 2015

 Đọc đề đi mình giải cho. Nhớ tick cho mình trước nhé

a: ΔABC=ΔHIK

29 tháng 12 2021

Chuyên gia lm tắt

19 tháng 12 2021

a: ΔABC=ΔIHK

24 tháng 1 2017

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 2 2018

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông