Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phần thưởng nhiều nhất là : a(phần thưởng). Điều kiện : a\(\in\)N*
Theo đề bài, ta có : \(\hept{\begin{cases}495⋮a\\198⋮a\\693⋮a\end{cases}}\)
\(\Rightarrow\)a\(\in\)ƯC(495,198,693)
Ta có : 495=32.5.11
198=2.32.11
693=32.7.11
\(\Rightarrow\)ƯCLN(495,198,693)=32.11=99
Do đó, có thể chia nhiều nhất thành 99 phần thưởng.
Khi đó, có số bút là : 495:99=5(cây)
số sách là : 198:99=2(quyển)
số vở là : 693:99=7(quyển)
Vậy có thể chia nhiều nhất thành 99 phần thưởng, khi đó, mỗi phần thưởng cõ 5 cây bút, 2 quyển sách và 7 quyển vở.
Giải
Gọi số phần thưởng là a
Vì khi chia 200 quyển vở cho a dư 20 quyển
=> 200-20 chia hết cho a
=180 chia hết cho a
và 90 chia hết cho a, 135 chia hết cho a
=> a là ƯC( 180;90;135)
180=2^2.3^2.5
90=2.3^2.5
135=3^3.5
ƯCLN(180,90,135)=3^2.5=45
Vậy số phần thưởng là 45
Mỗi phần thưởng có số quyển vở là 180:45 =4(quyển vở)
Mỗi phần thưởng có số tập giấy là 90:45 =2(tập giấy)
Mỗi phần thưởng có số cây bút là 135:45= 3(cây bút)
ta cần tìm ước chung lớn nhất của số bút và số quyển vở nên
\(120=2^3\times3\times5\)
\(84=2^2\times3\times7\)
dễ thấy ước chung của 120 và 840 sẽ là : \(2^2\times3=12\)
Vậy tối đa có thể chia thành 12 phần thưởng , mỗi phần có 10 quyển sách và 7 cái bút
gọi x là số phần thưởng : x : 24 , x : 18 ( x thuộc N* )
=> x thuộc ƯCLN(24,18)
ta có : 24=2^3 . 3 18= 2 . 3^2
ƯCLN(24,18) = 2.3=6
vậy có 6 phần thưởng
mỗi phần thưởng có số quyển vở là
24: 6 = 4 ( quyển vở )
mỗi phần có số cây bút là
18: 6 = 3 ( cây bút )
vậy có 6 phần thưởng mỗi phần thưởng có 4 quyển vở và 3 cây bút
lưu ý : x : 24 , x : 18 có nghĩa là x chia hết cho 24 và x chia hết cho 18
và ^ là mũ của lũy thừa
Có thể chia được nhiều nhất 99 phần thưởng vì UCLN(198;693;1287)=99
Khi đó, mỗi phần có 2 sách, 7 vở và 13 bút
gọi số phần thưởng là a (phần)
theo đề bài, ta có : 48 chia hết a
72 chia hết a
a thuộc N*
a lớn nhất
suy ra : a thuộc ƯCLN ( 48,72)
48 = 24 x 3
72 = 23 x 3
ƯCLN ( 48,72) = 23 x 3 = 24
vậy: số phần thưởng là 24 ( phần )
số bút trong mỗi phần thưởng là:
48 : 24 = 2 ( cái )
số vở trong mỗi phần thưởng là:
72 : 24 = 3 ( quyển )
Vậy : có thể chia nhiều nhất 24 phần thưởng và mỗi phần thưởng có 2 bút, 3 vở
Có thể chia được nhiều nhất 99 phần vì UCLN(198;693;1287)=99
Khi đó, mỗi phần có 2 sách, 7 vở và 12 bút
Chia thành các phần thưởng sao cho mỗi phần thưởng có số bút bi, số tẩy, số quyển vở bằng nhau nên số phần thưởng là ước chung của \(180,144,216\).
Mà số phần thưởng là nhiều nhất nên số phần thưởng là \(ƯCLN\left(180,144,216\right)\).
Phân tích thành tích các thừa số nguyên tố: \(180=2^2.3^2.5,144=2^4.3^2,216=2^3.3^3\)
suy ra \(ƯCLN\left(180,144,216\right)=2^2.3^2=36\)
Vậy có thể chia nhiều nhất thành \(36\)phần thưởng, khi đó mỗi phần thưởng có \(\frac{180}{36}=5\)cái bút bi, \(\frac{144}{36}=4\)cái tẩy và \(\frac{216}{36}=6\)quyển vở.