Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mẫu 1 có độ pH là:
\(pH=-log\left[H^+\right]=-log\left(8\cdot10^{-7}\right)=-log8+7=-3log2+7\)
Mẫu 2 có độ pH là:
\(pH'=-log\left[H^+\right]=-log\left(2\cdot10^{-9}\right)=-log2+9\)
Ta có:
\(pH-pH'=-3log2+7+log2-9=-2log2-2< 0\\ \Rightarrow pH< pH'\)
Mẫu 2 có độ pH lớn hơn mẫu 1.
\(pH=-log\left[H^+\right]=-log\left[10^{-4}\right]=4\)
\(pH=-log\left[H^+\right]=-log\left[10^{-5}\right]=5\)
tham khảo
Ta có:
\(pH=-logx\Leftrightarrow6,5=-logx\Leftrightarrow logx=-6,5\Leftrightarrow x=10^{-6,5}\approx3,16.10^{-77}\)
Vậy nồng độ \(H^+\) của sữa bằng \(3,16.10^{-7}\) mol/L.
Với \(pH=-log\left[H^+\right]\),ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=\dfrac{d}{d\left[H^+\right]}\left(-log\left[H^+\right]\right)\)
Sử dụng quy tắc tính đạo hàm của hàm hợp, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{d}{d\left[H^+\right]}\left(log\left[H^+\right]\right)\)
Áp dụng công thức đạo hàm của hàm số logarit tổng quát, ta có:
\(\dfrac{dpH}{d\left[H^+\right]}=-1.\dfrac{1}{\left[H^+\right]ln10}\)
Vậy tốc độ thay đổi của \(pH\) đối với nồng độ \(\left[H^+\right]\) là:
\(\dfrac{dpH}{d\left[H^+\right]}=-\dfrac{1}{\left[H^+\right]ln10}\)
\(a,pH_A=1,9\Leftrightarrow-log\left[H^+\right]=1,9\Leftrightarrow H^+=10^{-1,9}\)
Vậy độ acid của dung dịch A là \(10^{-1,9}mol/L\)
\(pH_B=2,5\Leftrightarrow-log\left[H^+\right]=2,5\Leftrightarrow H^+=10^{-2,5}\)
Vậy độ acid của dung dịch B là \(10^{-2,5}mol/L\)
Ta có: \(\dfrac{H^+_A}{H_B^+}=\dfrac{10^{-1,9}}{10^{-2,5}}\approx398\)
Vậy độ acid của dung dịch A cao hơn độ acid của dung dịch B 3,98 lần.
b, Ta có:
\(6,5< pH< 6,7\\ \Leftrightarrow6,5< -log\left[H^+\right]< 6,7\\ \Leftrightarrow-6,7< log\left[H^+\right]< -6,5\\ \Leftrightarrow10^{-6,7}< H^+< 10^{-6,5}\)
Vậy nước chảy từ vòi nước có độ acid từ \(10^{-6,7}mol/L\) đến \(10^{-6,5}mol/L\)
Như vậy, nước đó có độ acid cao hơn nước cất.
a)Độ pH của nước cất là:
\(pH=-log\left[H^+\right]=-log\left[10^{-7}\right]=7\)
b)Độ pH của dung dịch đó là:
\(pH=-log\left[H^+\right]=-log\left[20.10^{-7}\right]\approx5,7\)
pH=-log[H+]
Nồng độ ion hydro khi pH=8 là \(\left[H^+\right]=10^8\)(mol/lít)
a) Phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là:
\(S=2S.e^{1,14.t}\Leftrightarrow2e^{1,14t}=1\Leftrightarrow e^{1,14t}=\dfrac{1}{2}\)
b) Phương trình vừa tìm được có ẩn là t và nằm ở vị trí mũ của lũy thừa
a, Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\dfrac{1}{2}P_0\) là:
\(h=-19,4\cdot log\dfrac{\dfrac{1}{2}P_0}{P_0}=-10,4\cdot log\dfrac{1}{2}\approx5,84\left(km\right)\)
b, Độ cao của ngọn núi A là: \(h_A=-19,4\cdot log\dfrac{P_A}{P_0}\)
Độ cao của ngọn núi B là: \(h_B=-19,4\cdot log\dfrac{P_B}{P_0}\)
Áp suất không khí tại đỉnh của ngọn núi A bằng \(\dfrac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B nên ta có: \(P_A=\dfrac{4}{5}P_B\Rightarrow\dfrac{P_A}{P_B}=\dfrac{4}{5}\)
Ta có:
\(h_A-h_B=\left(-19,4\cdot log\dfrac{P_A}{P_0}\right)-\left(-19,4\cdot log\dfrac{P_B}{P_0}\right)\\ =-19,4\cdot log\dfrac{P_A}{P_0}+19,4\cdot log\dfrac{P_B}{P_0}\\ =-19,4\cdot log\dfrac{P_A}{P_B}\\ =-19,4\cdot log\dfrac{4}{5}\approx1,88\left(km\right)\)
Vậy ngọn núi A cao hơn ngọn núi B 1,88km.
a) Ta có:\(-\log\left[H^+\right]=6.1\Leftrightarrow-\log x=6,1\)
b) Phương trình vừa tìm được có ẩn là x và nằm ở vị trí hệ số của logarit